Difference between revisions of "009C Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Ratio Test
 +
|-
 +
|Check endpoints of interval
 
|}
 
|}
  
Line 13: Line 15:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|We proceed using the ratio test to find the interval of convergence. So, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(x+2)^{n+1}}{(n+1)^2}}\frac{n^2}{(-1)^n(x+2)^n}\bigg|\\
 +
&&\\
 +
& = & \displaystyle{|x+2|\lim_{n \rightarrow \infty}\frac{n^2}{(n+1)^2}}\\
 +
&&\\
 +
& = & \displaystyle{|x+2|\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^2}\\
 +
&&\\
 +
& = & \displaystyle{|x+2|\bigg(\lim_{n \rightarrow \infty}\frac{n}{n+1}\bigg)^2}\\
 +
&&\\
 +
& = & \displaystyle{|x+2|(1)^2}\\
 +
&&\\
 +
& = & \displaystyle{|x+2|}\\
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 
|-
 
|-
|
+
|So, we have <math>|x+2|<1</math>. Hence, our interval is <math>(-3,-1)</math>. But, we still need to check the endpoints of this interval
 
|-
 
|-
|
+
|to see if they are included in the interval of convergence.
 
|-
 
|-
 
|
 
|
Line 24: Line 45:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
 
|-
 
|-
|
+
|First, we let <math>x=-1</math>. Then, our series becomes <math>sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}</math>.
 
|-
 
|-
|
+
|Since <math>n^2<(n+1)^2</math>, we have <math>\frac{1}{(n+1)^2}<\frac{1}{n^2}</math>. Thus, <math>\frac{1}{n^2}</math> is decreasing.
 
|-
 
|-
 
|
 
|
 
|}
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 09:55, 8 February 2016

Find the interval of convergence of the following series.

Foundations:  
Ratio Test
Check endpoints of interval

Solution:

Step 1:  
We proceed using the ratio test to find the interval of convergence. So, we have
Step 2:  
So, we have . Hence, our interval is . But, we still need to check the endpoints of this interval
to see if they are included in the interval of convergence.
Step 3:  
First, we let . Then, our series becomes .
Since , we have . Thus, is decreasing.
Final Answer:  

Return to Sample Exam