Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
Line 14: Line 14:
 
!
 
!
 
|-
 
|-
|
 
 
function draw() {
 
  var canvas = document.getElementById('canvas');
 
  if (canvas.getContext){
 
    var ctx = canvas.getContext('2d');
 
 
    ctx.beginPath();
 
    ctx.moveTo(75,50);
 
    ctx.lineTo(100,75);
 
    ctx.lineTo(100,25);
 
   
 
  }
 
}
 
 
|Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = [\frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}]|_0^{\frac{\pi}{2}} = \frac{e^{\pi}}{6} + \frac{1}{2}(\frac{1}{e} - 1)</math>
 
|Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = [\frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}]|_0^{\frac{\pi}{2}} = \frac{e^{\pi}}{6} + \frac{1}{2}(\frac{1}{e} - 1)</math>

Latest revision as of 23:30, 7 February 2016

Calculate the following integrals

a)
b)


solution(a):

Here we change order of integration,

solution(b):

Here we change order of integration,