Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
!
 
!
 
|-
 
|-
 +
|
 +
 +
function draw() {
 +
  var canvas = document.getElementById('canvas');
 +
  if (canvas.getContext){
 +
    var ctx = canvas.getContext('2d');
 +
 +
    ctx.beginPath();
 +
    ctx.moveTo(75,50);
 +
    ctx.lineTo(100,75);
 +
    ctx.lineTo(100,25);
 +
   
 +
  }
 +
}
 
|Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = [\frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}]|_0^{\frac{\pi}{2}} = \frac{e^{\pi}}{6} + \frac{1}{2}(\frac{1}{e} - 1)</math>
 
|Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = [\frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}]|_0^{\frac{\pi}{2}} = \frac{e^{\pi}}{6} + \frac{1}{2}(\frac{1}{e} - 1)</math>

Revision as of 23:29, 7 February 2016

Calculate the following integrals

a)
b)


solution(a):

Here we change order of integration,

solution(b):

function draw() {

 var canvas = document.getElementById('canvas');
 if (canvas.getContext){
   var ctx = canvas.getContext('2d');
   ctx.beginPath();
   ctx.moveTo(75,50);
   ctx.lineTo(100,75);
   ctx.lineTo(100,25);
   
 }

}

Here we change order of integration,