Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
|-
 
|-
 
|Here we change order of integration, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math>
 
|Here we change order of integration, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math>
 +
 +
'''solution(b):'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!
 +
|-
 +
|Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math>

Revision as of 22:55, 7 February 2016

Calculate the following integrals

a)
b)


solution(a):

Here we change order of integration,

solution(b):

Here we change order of integration,