Difference between revisions of "Multivariate Calculus 10B, Problem 1"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
|- | |- | ||
|Here we change order of integration, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math> | |Here we change order of integration, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math> | ||
+ | |||
+ | '''solution(b):''' | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! | ||
+ | |- | ||
+ | |Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math> |
Revision as of 22:55, 7 February 2016
Calculate the following integrals
- a)
- b)
solution(a):
Here we change order of integration,
solution(b):
|