Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!
 
!
 
|-
 
|-
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1)</math>
+
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math>

Revision as of 02:52, 7 February 2016

Calculate the following integrals

a)
b)


solution(a):

Here we use change of variable,