Difference between revisions of "Multivariate Calculus 10B, Problem 1"
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
'''solution(a):''' | '''solution(a):''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | + | ! | |
|- | |- | ||
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math> | |Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math> |
Revision as of 02:48, 7 February 2016
Calculate the following integrals
- a)
- b)
solution(a):
Here we use change of variable, |