Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 2: Line 2:
 
:: <span class="exam">a) <math>\int _0^1 \int_y^1 e^{\frac{y}{x}}~dxdy</math>
 
:: <span class="exam">a) <math>\int _0^1 \int_y^1 e^{\frac{y}{x}}~dxdy</math>
 
:: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math>
 
:: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math>
 +
  
 
'''solution(a):'''
 
'''solution(a):'''
 
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!
 
 
|-
 
|-
 
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math>
 
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math>

Revision as of 02:48, 7 February 2016

Calculate the following integrals

a)
b)


solution(a):

Here we use change of variable,