Difference between revisions of "Multivariate Calculus 10B, Problem 1"
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
:: <span class="exam">a) <math>\int _0^1 \int_y^1 e^{\frac{y}{x}}~dxdy</math> | :: <span class="exam">a) <math>\int _0^1 \int_y^1 e^{\frac{y}{x}}~dxdy</math> | ||
:: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math> | :: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math> | ||
+ | |||
'''solution(a):''' | '''solution(a):''' | ||
− | + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | |
− | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | |||
|- | |- | ||
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math> | |Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx</math> |
Revision as of 02:48, 7 February 2016
Calculate the following integrals
- a)
- b)
solution(a):
Here we use change of variable, |