Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Here we use change of variable <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx</math>
+
|Here we use change of variable, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[\frac{1}{x}e^{\frac{y}{x}}\right|_{y = 0}^{y = x}</math>

Revision as of 02:42, 7 February 2016

Calculate the following integrals

a)
b)

solution:

a

Step 1:  
Here we use change of variable, Failed to parse (syntax error): {\displaystyle \int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[\frac{1}{x}e^{\frac{y}{x}}\right|_{y = 0}^{y = x}}