Difference between revisions of "009B Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 19: Line 19:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we graph these two functions.
 
|-
 
|-
|
+
|Insert graph here
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 31: Line 27:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|
+
|Setting <math>\sin x=\frac{2}{\pi}x</math>, we get three solutions <math>x=0,\frac{\pi}{2},\frac{-\pi}{2}</math>
 
|-
 
|-
|
+
|So, the three intersection points are <math>(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg)</math>.
 
|-
 
|-
|
+
|You can see these intersection points on the graph shown in Step 1.
 
|}
 
|}
  
Line 43: Line 39:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Using symmetry of the graph, the area bounded by the two functions is given by 
 
|-
 
|-
|
+
|<math>2\int_0^{\frac{\pi}{2}}\bigg(\sin(x)-\frac{2}{\pi}x\bigg)~dx</math>
 
|-
 
|-
 
|
 
|
Line 53: Line 49:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Lastly, we integrate to get
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{2\int_0^{\frac{\pi}{2}}\bigg(\sin (x)-\frac{2}{\pi}x\bigg)~dx} & {=} & \displaystyle{2\bigg(-\cos (x)-\frac{x^2}{\pi}\bigg)\bigg|_0^{\frac{\pi}{2}}}\\
 +
&&\\
 +
& = & \displaystyle{2\bigg(-\cos \bigg(\frac{\pi}{2}\bigg)-\frac{1}{\pi}\bigg(\frac{\pi}{2}\bigg)^2\bigg)}-2(-\cos(0))\\
 +
&&\\
 +
& = & \displaystyle{2\frac{-\pi}{4}+2}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-\pi}{2}+2}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 67: Line 66:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg)</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>\frac{-\pi}{2}+2</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:26, 4 February 2016

Consider the area bounded by the following two functions:

and

a) Find the three intersection points of the two given functions. (Drawing may be helpful.)

b) Find the area bounded by the two functions.

Foundations:  
Review the area between two functions

Solution:

(a)

Step 1:  
First, we graph these two functions.
Insert graph here
Step 2:  
Setting , we get three solutions
So, the three intersection points are .
You can see these intersection points on the graph shown in Step 1.

(b)

Step 1:  
Using symmetry of the graph, the area bounded by the two functions is given by
Step 2:  
Lastly, we integrate to get
Final Answer:  
(a)
(b)

Return to Sample Exam