Difference between revisions of "009B Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 80: | Line 80: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We start by calculating <math>\frac{dy}{dx}</math>. |
| + | |- | ||
| + | |Since <math>y=1-x^2,~ \frac{dy}{dx}=-2x</math>. | ||
|- | |- | ||
| − | | | + | |Using the formula given in the Foundations section, we have |
|- | |- | ||
| − | | | + | |<math>S=\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx</math>. |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we have <math>S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx</math> | ||
| + | |- | ||
| + | |We proceed by using trig substitution. Let <math>x=\frac{1}{2}\tan \theta</math>. Then, <math>dx=\frac{1}{2}\sec^2\theta d\theta</math>. | ||
| + | |- | ||
| + | |So, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 3: | !Step 3: | ||
| + | |- | ||
| + | |Now, we use <math>u</math>-substitution. Let <math>u=\sec \theta</math>. Then, <math>du=\sec \theta \tan \theta d\theta</math>. | ||
| + | |- | ||
| + | |So, the integral becomes | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int \frac{\pi}{2}u^2du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}u^3+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}\\ | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 4: | ||
| + | |- | ||
| + | |We started with a definite integral. So, using Step 2 and 3, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | S & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+4x^2}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3}\bigg|_0^1\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 106: | Line 147: | ||
|'''(a)''' <math>\ln (2+\sqrt{3})</math> | |'''(a)''' <math>\ln (2+\sqrt{3})</math> | ||
|- | |- | ||
| − | |'''(b)''' | + | |'''(b)''' <math>\frac{\pi}{6}(5\sqrt{5}-1)</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 16:31, 4 February 2016
a) Find the length of the curve
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}} .
b) The curve
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~~~0\leq x \leq 1}
is rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis. Find the area of the resulting surface.
| Foundations: |
|---|
| The formula for the length Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} of a curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\leq x \leq b} is |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx} . |
| integral of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec x} |
| The surface area Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} of a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} rotated about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis is given by |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int 2\pi x ds} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ds=\sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}} . |
Solution:
(a)
| Step 1: |
|---|
| First, we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}} . |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x} . |
| Using the formula given in the Foundations section, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int_0^{\frac{\pi}{3}} \sqrt{1+(-\tan x)^2}~dx} . |
| Step 2: |
|---|
| Now, we have: |
|
| Step 3: |
|---|
| Finally, |
|
(b)
| Step 1: |
|---|
| We start by calculating Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}} . |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~ \frac{dy}{dx}=-2x} . |
| Using the formula given in the Foundations section, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx} . |
| Step 2: |
|---|
| Now, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx} |
| We proceed by using trig substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{1}{2}\tan \theta} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=\frac{1}{2}\sec^2\theta d\theta} . |
| So, we have |
|
| Step 3: |
|---|
| Now, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sec \theta} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\sec \theta \tan \theta d\theta} . |
| So, the integral becomes |
|
| Step 4: |
|---|
| We started with a definite integral. So, using Step 2 and 3, we have |
|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln (2+\sqrt{3})} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{6}(5\sqrt{5}-1)} |