Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|The formula for the length of a curve <math>y=f(x)</math> where <math>a\leq x \leq b</math> is <math>L=\int_a^b \sqrt{1+\bigg(\frac{dy}{dx}\bigg)^2}~dx</math>.
 
|}
 
|}
  
Line 22: Line 22:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we calculate <math>\frac{dy}{dx}</math>.
 
|-
 
|-
|
+
|Since <math>y=\ln (\cos x),~\frac{dy}{dx}=\frac{1}{\cos x}(-\sin x)=-\tan x</math>.
 
|-
 
|-
|
+
|Using the formula given in the Foundations section, we have
 
|-
 
|-
|
+
|<math>L=\int_0^{\frac{\pi}{3}} \sqrt{1+(-\tan x)^2}~dx</math>.
 
|}
 
|}
  
Line 34: Line 34:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have:
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
L & = & \displaystyle{\int_0^{\frac{\pi}{3}} \sqrt{1+\tan^2 x}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sqrt{\sec^2x}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int_0^{\frac{\pi}{3}} \sec x ~dx}\\
 +
&&\\
 +
& = & \ln |\sec x+\tan x|\bigg|_0^{\frac{\pi}{3}}\\
 +
&&\\
 +
& = & \displaystyle{\ln \bigg|\sec \frac{\pi}{3}+\tan \frac{\pi}{3}\bigg|-\ln|\sec 0 +\tan 0|}\\
 +
&&\\
 +
& = & \displaystyle{\ln |2+\sqrt{3}|-\ln|1|}\\
 +
&&\\
 +
& = & \displaystyle{\ln (2+\sqrt{3})}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 70: Line 85:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>\ln (2+\sqrt{3})</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:50, 4 February 2016

a) Find the length of the curve

.

b) The curve

is rotated about the -axis. Find the area of the resulting surface.

Foundations:  
The formula for the length of a curve where is .

Solution:

(a)

Step 1:  
First, we calculate .
Since .
Using the formula given in the Foundations section, we have
.
Step 2:  
Now, we have:

(b)

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
(a)
(b)

Return to Sample Exam