Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
(→Temp 3) |
|||
Line 13: | Line 13: | ||
'''Solution:''' | '''Solution:''' | ||
− | + | ||
'''(a)''' | '''(a)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 35: | Line 35: | ||
|} | |} | ||
− | |||
'''(b)''' | '''(b)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 61: | Line 60: | ||
|} | |} | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 00:01, 3 February 2016
Evaluate
- a)
- b)
Foundations: |
---|
Review -substitution |
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
. |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
. |
(b)
Step 1: |
---|
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
So, we have |
. |
Final Answer: |
---|
(a) |
(b) |