Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 1: | Line 1: | ||
− | <span class="exam">Evaluate | + | <span class="exam"> Evaluate |
− | ::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> | + | ::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> |
− | ::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math> | + | |
+ | ::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math> | ||
Line 8: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |Review <math>u</math>-substitution | + | |Review <math style="vertical-align: 0px">u</math>-substitution |
|} | |} | ||
'''Solution:''' | '''Solution:''' | ||
− | + | == Temp 1 == | |
'''(a)''' | '''(a)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 33: | Line 34: | ||
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math> | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math> | ||
|} | |} | ||
− | + | == Temp 2 == | |
'''(b)''' | '''(b)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 58: | Line 59: | ||
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math> | |<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math> | ||
|} | |} | ||
− | + | == Temp 3 == | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 23:42, 2 February 2016
Evaluate
- a)
- b)
Foundations: |
---|
Review -substitution |
Solution:
Temp 1
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
Temp 2
(b)
Step 1: |
---|
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
So, we have |
Temp 3
Final Answer: |
---|
(a) |
(b) |