Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 14: | Line 14: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using integration by parts. Let <math>u=\sin(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=2\cos(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>. | + | |We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math>. Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}</math>. |
|- | |- | ||
|So, we get | |So, we get | ||
|- | |- | ||
− | |<math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx</math> | + | | <math style="vertical-align: -14px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx</math>. |
|} | |} | ||
Line 24: | Line 24: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we need to use integration by parts again. Let <math>u=\cos(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=-2\sin(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>. | + | |Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math>. Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}</math>. |
|- | |- | ||
|So, we get | |So, we get | ||
|- | |- | ||
− | |<math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx</math>. | + | | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx</math>. |
|- | |- | ||
| | | | ||
Line 40: | Line 40: | ||
|So, if we add the integral on the right to the other side of the equation, we get | |So, if we add the integral on the right to the other side of the equation, we get | ||
|- | |- | ||
− | |<math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math>. | + | | <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math> . |
|- | |- | ||
|Now, we divide both sides by 2 to get | |Now, we divide both sides by 2 to get | ||
|- | |- | ||
− | |<math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math>. | + | | <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math> . |
|- | |- | ||
− | |Thus, the final answer is <math>\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> | + | |Thus, the final answer is <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>. |
|} | |} | ||
Line 52: | Line 52: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> | + | | <math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 23:32, 2 February 2016
Evaluate the integral:
Foundations: |
---|
Review integration by parts |
Solution:
Step 1: |
---|
We proceed using integration by parts. Let and . Then, and . |
So, we get |
. |
Step 2: |
---|
Now, we need to use integration by parts again. Let and . Then, and . |
So, we get |
. |
Step 3: |
---|
Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem. |
So, if we add the integral on the right to the other side of the equation, we get |
. |
Now, we divide both sides by 2 to get |
. |
Thus, the final answer is . |
Final Answer: |
---|