Difference between revisions of "009B Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We proceed using integration by parts. Let <math>u=\sin(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=2\cos(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>.
+
|We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math>. Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}</math>.
 
|-
 
|-
 
|So, we get  
 
|So, we get  
 
|-
 
|-
|<math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx</math>.
 
|}
 
|}
  
Line 24: Line 24:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use integration by parts again. Let <math>u=\cos(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=-2\sin(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>.
+
|Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math>. Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}</math>.
 
|-
 
|-
 
|So, we get  
 
|So, we get  
 
|-
 
|-
|<math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx</math>.
+
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx</math>.
 
|-
 
|-
 
|
 
|
Line 40: Line 40:
 
|So, if we add the integral on the right to the other side of the equation, we get
 
|So, if we add the integral on the right to the other side of the equation, we get
 
|-
 
|-
|<math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math>.
+
| &nbsp;&nbsp; <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math>&thinsp;.
 
|-
 
|-
 
|Now, we divide both sides by 2 to get  
 
|Now, we divide both sides by 2 to get  
 
|-
 
|-
|<math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math>.
+
| &nbsp;&nbsp; <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math>&thinsp;.
 
|-
 
|-
|Thus, the final answer is <math>\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>
+
|Thus, the final answer is <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>.
 
|}
 
|}
  
Line 52: Line 52:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>
+
| &nbsp;&nbsp; <math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 23:32, 2 February 2016

Evaluate the integral:


Foundations:  
Review integration by parts

Solution:

Step 1:  
We proceed using integration by parts. Let and . Then, and .
So, we get
   .
Step 2:  
Now, we need to use integration by parts again. Let and . Then, and .
So, we get
   .
Step 3:  
Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem.
So, if we add the integral on the right to the other side of the equation, we get
    .
Now, we divide both sides by 2 to get
    .
Thus, the final answer is .
Final Answer:  
  

Return to Sample Exam