Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we write <math>\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx</math>.  
+
|First, we write <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx</math>.  
 
|-
 
|-
|Using the trig identity <math>\sec^2(x)=\tan^2(x)+1</math>, we have <math>\tan^2(x)=\sec^2(x)-1</math>.  
+
|Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1</math>, we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1</math>.  
 
|-
 
|-
|Plugging in the last identity into one of the <math>\tan^2(x)</math>, we get
+
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x)</math>, we get
 
|-
 
|-
|<math>\int \tan^4(x)~dx=\int \tan^2(x) (\sec^2(x)-1)~dx=\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) (\sec^2(x)-1)~dx=\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>,
 
|-
 
|-
 
|using the identity again on the last equality.
 
|using the identity again on the last equality.
Line 31: Line 31:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, we have <math>\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>.
+
|So, we have <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>.
 
|-
 
|-
|For the first integral, we need to use <math>u</math>-substitution. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2(x)dx</math>.
+
|For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\tan(x)</math>. Then, <math style="vertical-align: -5px">du=\sec^2(x)dx</math>.
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
|<math>\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx</math>.
+
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx</math>.
 
|}
 
|}
  
Line 45: Line 45:
 
|We integrate to get  
 
|We integrate to get  
 
|-
 
|-
| <math>\int \tan^4(x)~dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>.
 
|}
 
|}
  
Line 51: Line 51:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
+
| &nbsp;&nbsp; <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 23:20, 2 February 2016

Evaluate the integral:


Foundations:  
Review -substitution and
trig identities

Solution:

Step 1:  
First, we write .
Using the trig identity , we have .
Plugging in the last identity into one of the , we get
   ,
using the identity again on the last equality.
Step 2:  
So, we have .
For the first integral, we need to use -substitution. Let . Then, .
So, we have
   .
Step 3:  
We integrate to get
   .
Final Answer:  
  

Return to Sample Exam