Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 59: Line 59:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we write <math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}</math>.
 
|-
 
|-
|
+
|Now, we proceed by <math>u</math>-substitution. We let <math>u=4-x</math>. Then, <math>du=-dx</math>.
 
|-
 
|-
|
+
|Since the integral is a definite integral, we need to change the bounds of integration.
 +
|-
 +
|Plugging in our values into the equation <math>u=4-x</math>, we get <math>u_1=4-1=3</math> and <math>u_2=4-a</math>.
 +
|-
 +
|Thus, the integral becomes
 +
|-
 +
|<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_3^{4-a}\frac{-du}{\sqrt{u}}</math>.
 
|}
 
|}
  
Line 69: Line 75:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We integrate to get
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
 
|-
 
|-
|
+
|<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \left.-2u^{\frac{1}{2}}\right|_{3}^{4-a}=\lim_{a\rightarrow 4}-2\sqrt{4-a}+2\sqrt{3}=2\sqrt{3}</math>
 
|}
 
|}
  
Line 85: Line 85:
 
|'''(a)''' <math>1</math>
 
|'''(a)''' <math>1</math>
 
|-
 
|-
|'''(b)'''
+
|'''(b)''' <math>2\sqrt{3}</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:36, 2 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
.
Using L'Hopital's Rule, we get
.

(b)

Step 1:  
First, we write .
Now, we proceed by -substitution. We let . Then, .
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Thus, the integral becomes
.
Step 2:  
We integrate to get
Final Answer:  
(a)
(b)

Return to Sample Exam