Difference between revisions of "009B Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 2: | Line 2: | ||
:::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>. | :::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>. | ||
| − | <span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2) | + | <span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2)2t~dt</math>. |
<span class="exam">b) Find <math>f'(x)</math>. | <span class="exam">b) Find <math>f'(x)</math>. | ||
| Line 8: | Line 8: | ||
<span class="exam">c) State the fundamental theorem of calculus. | <span class="exam">c) State the fundamental theorem of calculus. | ||
| − | <span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2) | + | <span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)</math> without first computing the integral. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |<math>u</math>-substitution |
|} | |} | ||
| Line 23: | Line 23: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We proceed using <math>u</math>-substitution. Let <math>u=t^2</math>. Then, <math>du=2tdt</math>. |
| − | |||
| − | |||
|- | |- | ||
| − | | | + | |Since this is a definite integral, we need to change the bounds of integration. |
|- | |- | ||
| − | | | + | |Plugging in our values into the equation <math>u=t^2</math>, we get <math>u_1=(-1)^2=1</math> and <math>u_2=x^2</math>. |
|} | |} | ||
| Line 35: | Line 33: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | ||So, we have |
| − | |||
| − | | | ||
|- | |- | ||
| − | | | + | |<math>f(x)=\int_{-1}^{x} \sin(t^2)2t~dt=\int_{1}^{x^2} \sin(u)du=\left.-\cos(u)\right|_{1}^{x^2}=-\cos(x^2)+\cos(1)</math>. |
|} | |} | ||
| Line 47: | Line 43: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |From part (a), we have <math>f(x)=-\cos(x^2)+\cos(1)</math>. |
| − | |||
| − | |||
| − | |||
| − | |||
|} | |} | ||
| Line 57: | Line 49: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |If we take the derivative, we get <math>f'(x)=\sin(x^2)2x</math>. |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|} | |} | ||
| Line 111: | Line 95: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | |'''(a)''' <math>f(x)=-\cos(x^2)+\cos(1)</math> |
|- | |- | ||
| − | |'''(b)''' | + | |'''(b)''' <math>f'(x)=\sin(x^2)2x</math> |
|- | |- | ||
|'''(c)''' | |'''(c)''' | ||
Revision as of 15:23, 2 February 2016
We would like to evaluate
- .
a) Compute .
b) Find .
c) State the fundamental theorem of calculus.
d) Use the fundamental theorem of calculus to compute without first computing the integral.
| Foundations: |
|---|
| -substitution |
Solution:
(a)
| Step 1: |
|---|
| We proceed using -substitution. Let . Then, . |
| Since this is a definite integral, we need to change the bounds of integration. |
| Plugging in our values into the equation , we get and . |
| Step 2: |
|---|
| So, we have |
| . |
(b)
| Step 1: |
|---|
| From part (a), we have . |
| Step 2: |
|---|
| If we take the derivative, we get . |
(c)
| Step 1: |
|---|
| Step 2: |
|---|
(d)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |
| (d) |