Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 50: Line 50:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|
 
|-
 
|-
 
|
 
|
Line 77: Line 79:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>.
 +
|-
 +
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have
 +
|-
 +
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>.
 
|-
 
|-
 
|
 
|
Line 85: Line 91:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math>. Then, <math>du=-\sin x dx</math>. So we have
 
|-
 
|-
|
+
|<math style="vertical-align: -13px">\int\sin^3x~dx=\int -(1-u^2)~du=-u+\frac{u^3}{3}+C=-\cos x+\frac{\cos^3x}{3}+C</math>.
 
|-
 
|-
 
|
 
|
Line 99: Line 105:
 
|'''(b)'''  
 
|'''(b)'''  
 
|-
 
|-
|'''(c)'''  
+
|'''(c)''' <math>-\cos x+\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:00, 2 February 2016

Compute the following integrals.

a)

b)

c)


Foundations:  
Review -substitution
Integration by parts
Partial fraction decomposition
Trig identities

Solution:

(a)

Step 1:  
We first distribute to get .
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and . So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, . So, we have
.

(b)

Step 1:  
Step 2:  
Step 3:  

(c)

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we proceed by -substitution. Let . Then, . So we have
.
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam