Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 1: | Line 1: | ||
− | <span class="exam">Consider the region <math>S</math> bounded by <math>x=1,x=5,y=\frac{1}{x^2}</math> and the <math>x</math>-axis. | + | <span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math> and the <math>x</math>-axis. |
+ | |||
+ | ::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>. | ||
+ | ::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit. | ||
− | |||
− | |||
Line 17: | Line 18: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math>f(x)=\frac{1}{x^2}</math> | + | |Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}</math>. Since our interval is <math style="vertical-align: -5px">[1,5]</math> and we are using 4 rectangles, each rectangle has width 1. Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is |
− | |||
− | |||
|- | |- | ||
− | |<math>1(f(1)+f(2)+f(3)+f(4))</math>. | + | | <math>1\cdot (f(1)+f(2)+f(3)+f(4))</math>. |
|- | |- | ||
| | | | ||
Line 31: | Line 30: | ||
|Thus, the left-endpoint Riemann sum is | |Thus, the left-endpoint Riemann sum is | ||
|- | |- | ||
− | |<math>1(f(1)+f(2)+f(3)+f(4))=\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)=\frac{205}{144}</math>. | + | |<math>1\cdot (f(1)+f(2)+f(3)+f(4))=\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)=\frac{205}{144}</math>. |
|- | |- | ||
|The left-endpoint Riemann sum overestimates the area of <math>S</math>. | |The left-endpoint Riemann sum overestimates the area of <math>S</math>. |
Revision as of 21:40, 1 February 2016
Consider the region bounded by and the -axis.
- a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and indicate whether your rectangles overestimate or underestimate the area of .
- b) Find an expression for the area of the region as a limit. Do not evaluate the limit.
Foundations: |
---|
Link to Riemann sums page |
Solution:
(a)
Step 1: |
---|
Let . Since our interval is and we are using 4 rectangles, each rectangle has width 1. Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is |
. |
Step 2: |
---|
Thus, the left-endpoint Riemann sum is |
. |
The left-endpoint Riemann sum overestimates the area of . |
(b)
Step 1: |
---|
Let be the number of rectangles used in the left-endpoint Riemann sum for . |
The width of each rectangle is . |
Step 2: |
---|
So, the left-endpoint Riemann sum is |
. |
Now, we let go to infinity to get a limit. |
So, the area of is equal to . |
Final Answer: |
---|
(a) Left-endpoint Riemann sum: , The left-endpoint Riemann sum overestimates the area of . |
(b) Using left-endpoint Riemann sums: |