Difference between revisions of "009C Sample Final 1"
Kayla Murray (talk | contribs) (→ Problem 6 ) |
Kayla Murray (talk | contribs) (→ Problem 7 ) |
||
| Line 37: | Line 37: | ||
== [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | == [[009C_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
| − | ::<span class="exam">a) | + | A curve is given in polar coordinates by |
| − | :: | + | ::::::<math>r=1+\sin\theta</math> |
| − | ::<span class="exam"> | + | |
| − | + | ::<span class="exam">a) Sketch the curve. | |
| − | + | ::<span class="exam">b) Compute <math>y'=\frac{dy}{dx}</math>. | |
| + | ::<span class="exam">c) Compute <math>y''=\frac{d^2y}{dx^2}</math>. | ||
Revision as of 17:28, 1 February 2016
This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Problem 1
Compute
- a)
- b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}}
Problem 2
Find the sum of the following series:
- a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-2)^ne^{-n}}
- b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)}
Problem 3
Determine whether the following series converges or diverges.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}}
Problem 4
Find the interval of convergence of the following series.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}}
Problem 5
Let
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sum_{n=1}^{\infty} nx^n}
- a) Find the radius of convergence of the power series.
- b) Determine the interval of convergence of the power series.
- c) Obtain an explicit formula for the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} .
Problem 6
Find the Taylor polynomial of degree 4 of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\cos^2x} at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=\frac{\pi}{4}} .
Problem 7
A curve is given in polar coordinates by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin\theta}
- a) Sketch the curve.
- b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\frac{dy}{dx}} .
- c) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y''=\frac{d^2y}{dx^2}} .