Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Integrating polynomials
+
|Review <math>u</math>-substitution   
|-
 
|U substitution   
 
 
|}
 
|}
  
Line 40: Line 38:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We use substitution. Let <math>u=x^4+2x^2+4</math>. Then, <math>du=(4x^3+4x)dx</math> and <math>\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration.  
+
|We use <math>u</math>-substitution. Let <math>u=x^4+2x^2+4</math>. Then, <math>du=(4x^3+4x)dx</math> and <math>\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration.  
 
|-
 
|-
 
|Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>.
 
|Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>.

Revision as of 15:54, 1 February 2016

Evaluate

a)
b)


Foundations:  
Review -substitution

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
Step 2:  
We integrate to get
.
We now evaluate to get

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes
Step 2:  
We now have:
So, we have
Final Answer:  
(a)
(b)

Return to Sample Exam