Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 43: Line 43:
 
|
 
|
 
|}
 
|}
== Temp 1 ==
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2:  
 
!Step 2:  

Revision as of 15:44, 1 February 2016

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
Link to Riemann sums page

Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is
   .
Step 2:  
Thus, the left-hand Riemann sum is
   .

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
   .
Step 2:  
Thus, the right-hand Riemann sum is
   .

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the right-hand Riemann sum is
   .
Finally, we let go to infinity to get a limit.
Thus, is equal to .
Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam