Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
| Line 28: | Line 28: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we use <math style="vertical-align: 0px">u</math> substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math>. Then, <math style="vertical-align: -5px">du=-\sin(x)dx</math>. Therefore, | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math>. Then, <math style="vertical-align: -5px">du=-\sin(x)dx</math>. Therefore, |
|- | |- | ||
| <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>. | | <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>. | ||
Revision as of 14:19, 1 February 2016
Evaluate the integral:
| Foundations: |
|---|
| Review -substitution, and |
| Trig identities. |
Solution:
| Step 1: |
|---|
| First, we write . |
| Using the identity , we get . If we use this identity, we have |
| . |
| Step 2: |
|---|
| Now, we use -substitution. Let . Then, . Therefore, |
| . |
| Final Answer: |
|---|