Difference between revisions of "009B Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
| Line 22: | Line 22: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we use substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>. | + | |Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>. |
|- | |- | ||
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>. | |We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>. | ||
Revision as of 13:16, 1 February 2016
Find the average value of the function on the given interval.
| Foundations: |
|---|
| The average value of a function on an interval is given by . |
Solution:
| Step 1: |
|---|
| Using the formula given in Foundations, we have: |
| Step 2: |
|---|
| Now, we use -substitution. Let . Then, and . Also, . |
| We need to change the bounds on the integral. We have and . |
| So, the integral becomes . |
| Step 3: |
|---|
| We integrate to get |
| Step 4: |
|---|
| We evaluate to get |
| . |
| Final Answer: |
|---|