Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Now, we use substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>.
+
|Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>.
 
|-
 
|-
 
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>.
 
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>.

Revision as of 14:16, 1 February 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by .

Solution:

Step 1:  
Using the formula given in Foundations, we have:
   
Step 2:  
Now, we use -substitution. Let . Then, and . Also, .
We need to change the bounds on the integral. We have and .
So, the integral becomes .
Step 3:  
We integrate to get
   
Step 4:  
We evaluate to get
    .
Final Answer:  
   

Return to Sample Exam