Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 34: | Line 34: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Again, we need to use substitution. Let <math style="vertical-align: -5px">u=\sin(x)</math>. Then, <math style="vertical-align: -5px">du=\cos(x)dx</math>. Also, we need to change the bounds of integration. | + | |Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x)</math>. Then, <math style="vertical-align: -5px">du=\cos(x)dx</math>. Also, we need to change the bounds of integration. |
|- | |- | ||
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x)</math>, we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>. | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x)</math>, we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>. |
Revision as of 14:14, 1 February 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Review -substitution. |
Solution:
(a)
Step 1: |
---|
We need to use -substitution. Let . Then, and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
(b)
Step 1: |
---|
Again, we need to use -substitution. Let . Then, . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
Final Answer: |
---|
(a) |
(b) |