Difference between revisions of "009B Sample Midterm 1, Problem 5"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | |||
| Line 1: | Line 1: | ||
| <span class="exam">Let <math>f(x)=1-x^2</math>. | <span class="exam">Let <math>f(x)=1-x^2</math>. | ||
| − | ::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes. | + | ::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | 
| − | ::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes. | + | ::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | 
| − | ::<span class="exam">c) Express <math>\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | + | ::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | 
| Line 18: | Line 18: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | |Since our interval is <math>[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is   | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is   | 
| |- | |- | ||
| − | |<math>1(f(0)+f(1)+f(2))</math>.    | + | |    <math style="vertical-align: 0px">1(f(0)+f(1)+f(2))</math>.    | 
| |- | |- | ||
| | | | | ||
| Line 30: | Line 30: | ||
| |Thus, the left-hand Riemann sum is   | |Thus, the left-hand Riemann sum is   | ||
| |- | |- | ||
| − | |<math>1(f(0)+f(1)+f(2))=1+0+-3=-2</math>.    | + | |    <math style="vertical-align: -4px">1(f(0)+f(1)+f(2))=1+0+-3=-2</math>.    | 
| |} | |} | ||
| Line 37: | Line 37: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | |Since our interval is <math>[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is | 
| |- | |- | ||
| − | |<math>1(f(1)+f(2)+f(3))</math>.    | + | |    <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))</math>.    | 
| |- | |- | ||
| | | | | ||
| Line 49: | Line 49: | ||
| |Thus, the right-hand Riemann sum is   | |Thus, the right-hand Riemann sum is   | ||
| |- | |- | ||
| − | |<math>1(f(1)+f(2)+f(3))=0+-3+-8=-11</math>.    | + | |    <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))=0+-3+-8=-11</math>.    | 
| |} | |} | ||
| Line 56: | Line 56: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | |Let <math>n</math> be the number of rectangles used in the right-hand Riemann sum for <math>f(x)=1-x^2</math>. | + | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2</math>. | 
| |- | |- | ||
| − | |The width of each rectangle is <math>\Delta x=\frac{3-0}{n}=\frac{3}{n}</math>. | + | |The width of each rectangle is <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}</math>. | 
| |- | |- | ||
| | | | | ||
| Line 70: | Line 70: | ||
| |So, the right-hand Riemann sum is   | |So, the right-hand Riemann sum is   | ||
| |- | |- | ||
| − | |<math>\Delta x \bigg(f\bigg(\frac{3}{n}\bigg)+f\bigg(2\frac{3}{n}\bigg)+f\bigg(3\frac{3}{n}\bigg)+\ldots +f(3)\bigg)</math>. | + | |    <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg)</math>. | 
| |- | |- | ||
| − | | | + | |Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.    | 
| |- | |- | ||
| − | | | + | |Thus, the area of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>. | 
| |} | |} | ||
| Line 80: | Line 80: | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | |'''(a)''' <math>-2</math>   | + | |'''(a)'''  <math style="vertical-align: -2px">-2</math>   | 
| |- | |- | ||
| − | |'''(b)''' <math>-11</math> | + | |'''(b)'''  <math style="vertical-align: -2px">-11</math> | 
| |- | |- | ||
| − | |'''(c)''' <math>\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math> | + | |'''(c)'''  <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math> | 
| |} | |} | ||
| [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 23:23, 31 January 2016
Let .
- a) Compute the left-hand Riemann sum approximation of with boxes.
- b) Compute the right-hand Riemann sum approximation of with boxes.
- c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
 
| Foundations: | 
|---|
| Link to Riemann sums page | 
Solution:
(a)
| Step 1: | 
|---|
| Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is | 
| . | 
| Step 2: | 
|---|
| Thus, the left-hand Riemann sum is | 
| . | 
(b)
| Step 1: | 
|---|
| Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is | 
| . | 
| Step 2: | 
|---|
| Thus, the right-hand Riemann sum is | 
| . | 
(c)
| Step 1: | 
|---|
| Let be the number of rectangles used in the right-hand Riemann sum for . | 
| The width of each rectangle is . | 
| Step 2: | 
|---|
| So, the right-hand Riemann sum is | 
| . | 
| Finally, we let go to infinity to get a limit. | 
| Thus, the area of is equal to . | 
| Final Answer: | 
|---|
| (a) | 
| (b) | 
| (c) |