Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | Review u substitution | + | | Review <math style="vertical-align: 0px">u</math>-substitution, and |
|- | |- | ||
− | | Trig identities | + | |Trig identities. |
|} | |} | ||
Line 16: | Line 16: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we write <math>\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>. | + | |First, we write <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>. |
|- | |- | ||
− | |Using the identity <math>\sin^2x+\cos^2x=1</math>, we get <math>\sin^2x=1-\cos^2x</math>. If we use this identity, we have | + | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have |
|- | |- | ||
− | |<math>\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx</math>. | + | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx</math>. |
|- | |- | ||
| | | | ||
Line 28: | Line 28: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use u substitution. Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>. Therefore, | + | |Now, we use <math style="vertical-align: 0px">u</math> substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math>. Then, <math style="vertical-align: -5px">du=-\sin(x)dx</math>. Therefore, |
|- | |- | ||
− | |<math>\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> | + | | <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>. |
|} | |} | ||
Line 36: | Line 36: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> | + | | <math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 22:55, 31 January 2016
Evaluate the integral:
Foundations: |
---|
Review -substitution, and |
Trig identities. |
Solution:
Step 1: |
---|
First, we write . |
Using the identity , we get . If we use this identity, we have |
. |
Step 2: |
---|
Now, we use substitution. Let . Then, . Therefore, |
. |
Final Answer: |
---|