Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| Review u substitution
+
| Review <math style="vertical-align: 0px">u</math>-substitution, and
 
|-
 
|-
| Trig identities  
+
|Trig identities.
 
|}
 
|}
  
Line 16: Line 16:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we write <math>\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>.
+
|First, we write <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>.
 
|-
 
|-
|Using the identity <math>\sin^2x+\cos^2x=1</math>, we get <math>\sin^2x=1-\cos^2x</math>. If we use this identity, we have
+
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have
 
|-
 
|-
|<math>\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx</math>.
+
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx</math>.
 
|-
 
|-
 
|
 
|
Line 28: Line 28:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use u substitution. Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>. Therefore,  
+
|Now, we use <math style="vertical-align: 0px">u</math> substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math>. Then, <math style="vertical-align: -5px">du=-\sin(x)dx</math>. Therefore,  
 
|-
 
|-
|<math>\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>.
 
|}
 
|}
  
Line 36: Line 36:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
+
| &nbsp;&nbsp; <math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 22:55, 31 January 2016

Evaluate the integral:


Foundations:  
Review -substitution, and
Trig identities.

Solution:

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we use substitution. Let . Then, . Therefore,
   .
Final Answer:  
  

Return to Sample Exam