Difference between revisions of "009B Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |The average value of a function <math>f(x)</math> on an interval <math>[a,b]</math> is given by <math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>. | + | |The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>. |
|} | |} | ||
Line 14: | Line 14: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Using the formula given in | + | |Using the formula given in Foundations, we have: |
|- | |- | ||
− | |<math>f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx</math> | + | | <math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math> |
|} | |} | ||
Line 22: | Line 22: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use substitution. Let <math>u=1+x^2</math>. Then, <math>du=2x dx</math> and <math>\frac{du}{2}=xdx</math>. Also, <math>x^2=u-1</math>. | + | |Now, we use substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>. |
|- | |- | ||
− | |We need to change the bounds on the integral. We have <math>u_1=1+0^2=1</math> and <math>u_2=1+2^2=5</math>. | + | |We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>. |
|- | |- | ||
− | |So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>. | + | |So, the integral becomes <math style="vertical-align: -19px">f_{\text{avg}}=\int_0^2 x\cdot x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>. |
|} | |} | ||
Line 34: | Line 34: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | |<math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5</math> | + | | <math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.</math> |
|- | |- | ||
| | | | ||
Line 46: | Line 46: | ||
|We evaluate to get | |We evaluate to get | ||
|- | |- | ||
− | |<math>f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>. | + | | <math style="vertical-align: -20px">f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>. |
|- | |- | ||
| | | | ||
Line 56: | Line 56: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>\frac{4948}{5}</math> | + | | <math>\frac{4948}{5}</math> |
|- | |- | ||
| | | | ||
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 19:44, 31 January 2016
Find the average value of the function on the given interval.
Foundations: |
---|
The average value of a function on an interval is given by . |
Solution:
Step 1: |
---|
Using the formula given in Foundations, we have: |
Step 2: |
---|
Now, we use substitution. Let . Then, and . Also, . |
We need to change the bounds on the integral. We have and . |
So, the integral becomes . |
Step 3: |
---|
We integrate to get |
Step 4: |
---|
We evaluate to get |
. |
Final Answer: |
---|