Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The average value of a function <math>f(x)</math> on an interval <math>[a,b]</math> is given by <math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.  
+
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.  
 
|}
 
|}
  
Line 14: Line 14:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using the formula given in the Foundations sections, we have:
+
|Using the formula given in Foundations, we have:
 
|-
 
|-
|<math>f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx</math>  
+
| &nbsp; &nbsp;<math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math>  
 
|}
 
|}
  
Line 22: Line 22:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use substitution. Let <math>u=1+x^2</math>. Then, <math>du=2x dx</math> and <math>\frac{du}{2}=xdx</math>. Also, <math>x^2=u-1</math>.
+
|Now, we use substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>.
 
|-
 
|-
|We need to change the bounds on the integral. We have <math>u_1=1+0^2=1</math> and <math>u_2=1+2^2=5</math>.
+
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>.
 
|-
 
|-
|So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>.
+
|So, the integral becomes <math style="vertical-align: -19px">f_{\text{avg}}=\int_0^2 x\cdot x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>.
 
|}
 
|}
  
Line 34: Line 34:
 
|We integrate to get
 
|We integrate to get
 
|-
 
|-
|<math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5</math>
+
| &nbsp; &nbsp; <math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.</math>
 
|-
 
|-
 
|
 
|
Line 46: Line 46:
 
|We evaluate to get
 
|We evaluate to get
 
|-
 
|-
|<math>f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>.
+
| &nbsp; &nbsp; <math style="vertical-align: -20px">f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>.
 
|-
 
|-
 
|
 
|
Line 56: Line 56:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>\frac{4948}{5}</math>
+
| &nbsp; &nbsp; <math>\frac{4948}{5}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:44, 31 January 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by .

Solution:

Step 1:  
Using the formula given in Foundations, we have:
   
Step 2:  
Now, we use substitution. Let . Then, and . Also, .
We need to change the bounds on the integral. We have and .
So, the integral becomes .
Step 3:  
We integrate to get
   
Step 4:  
We evaluate to get
    .
Final Answer:  
   

Return to Sample Exam