Difference between revisions of "009B Sample Midterm 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate the integral:
 
<span class="exam">Evaluate the integral:
  
::<math>\int \sin (\ln x)dx</math>
+
::<math>\int \sin (\ln x)~dx</math>
  
  
Line 18: Line 18:
 
|Therefore, we get  
 
|Therefore, we get  
 
|-
 
|-
|<math>\int \sin (\ln x)dx=x\sin(\ln x)-\int \cos(\ln x)dx</math>.
+
|<math>\int \sin (\ln x)~dx=x\sin(\ln x)-\int \cos(\ln x)~dx</math>.
 
|}
 
|}
  
Line 28: Line 28:
 
|Therfore, we get  
 
|Therfore, we get  
 
|-
 
|-
|<math>\int \sin (\ln x)dx=x\sin(\ln x)-\bigg(x\cos(\ln x)+\int \sin(\ln x)dx\bigg)=x\sin(\ln x)-x\cos(\ln x)-\int \sin(\ln x)dx</math>.
+
|<math>\int \sin (\ln x)~dx=x\sin(\ln x)-\bigg(x\cos(\ln x)+\int \sin(\ln x)~dx\bigg)=x\sin(\ln x)-x\cos(\ln x)-\int \sin(\ln x)~dx</math>.
 
|-
 
|-
 
|
 
|
Line 40: Line 40:
 
|So, if we add the integral on the right to the other side of the equation, we get
 
|So, if we add the integral on the right to the other side of the equation, we get
 
|-
 
|-
|<math>2\int \sin(\ln x)dx=x\sin(\ln x)-x\cos(\ln x)</math>.
+
|<math>2\int \sin(\ln x)~dx=x\sin(\ln x)-x\cos(\ln x)</math>.
 
|-
 
|-
 
|Now, we divide both sides by 2 to get  
 
|Now, we divide both sides by 2 to get  
 
|-
 
|-
|<math>\int \sin(\ln x)dx=\frac{x\sin(\ln x)}{2}-\frac{x\cos(\ln x)}{2}</math>.
+
|<math>\int \sin(\ln x)~dx=\frac{x\sin(\ln x)}{2}-\frac{x\cos(\ln x)}{2}</math>.
 
|-
 
|-
|Thus, the final answer is <math>\int \sin(\ln x)dx=\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math>
+
|Thus, the final answer is <math>\int \sin(\ln x)~dx=\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math>
 
|}
 
|}
  

Revision as of 15:32, 31 January 2016

Evaluate the integral:


Foundations:  
Review integration by parts

Solution:

Step 1:  
We proceed using integration by parts. Let and . Then, and .
Therefore, we get
.
Step 2:  
Now, we need to use integration by parts again. Let and . Then, and .
Therfore, we get
.
Step 3:  
Notice that the integral on the right of the last equation is the same integral that we had at the beginning.
So, if we add the integral on the right to the other side of the equation, we get
.
Now, we divide both sides by 2 to get
.
Thus, the final answer is
Final Answer:  

Return to Sample Exam