Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 2: Line 2:
  
 
::<span class="exam">a) State the fundamental theorem of calculus.
 
::<span class="exam">a) State the fundamental theorem of calculus.
::<span class="exam">b) Compute <math>\frac{d}{dx}\int_0^{\cos (x)}\sin (t)dt</math>
+
::<span class="exam">b) Compute <math>\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>
::<span class="exam">c) Evaluate <math>\int_{0}^{\frac{\pi}{4}}\sec^2 xdx</math>
+
::<span class="exam">c) Evaluate <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx</math>
  
  
Line 23: Line 23:
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
Line 35: Line 35:
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
+
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|}
 
|}
  
Line 43: Line 43:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math>F(x)=\int_0^{\cos (x)}\sin (t)dt</math>. The problem is asking us to find <math>F'(x)</math>.
+
|Let <math>F(x)=\int_0^{\cos (x)}\sin (t)~dt</math>. The problem is asking us to find <math>F'(x)</math>.
 
|-
 
|-
|Let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_0^x \sin(t)dt</math>.
+
|Let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_0^x \sin(t)~dt</math>.
 
|-
 
|-
 
|Then, <math>F(x)=G(g(x))</math>.
 
|Then, <math>F(x)=G(g(x))</math>.
Line 71: Line 71:
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
|-
 
|-
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 xdx=\left.\tan(x)\right|_0^{\frac{\pi}{4}}</math>
+
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\left.\tan(x)\right|_0^{\frac{\pi}{4}}</math>
 
|}
 
|}
  
Line 79: Line 79:
 
|So, we get  
 
|So, we get  
 
|-
 
|-
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 xdx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>
+
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>
 
|-
 
|-
 
|
 
|
Line 91: Line 91:
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
Line 99: Line 99:
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
+
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
 
|-
 
|-
 
|'''(b)''' <math>\sin(\cos(x))(-\sin(x)</math>
 
|'''(b)''' <math>\sin(\cos(x))(-\sin(x)</math>

Revision as of 15:19, 31 January 2016

This problem has three parts:

a) State the fundamental theorem of calculus.
b) Compute
c) Evaluate


Foundations:  

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,

(b)

Step 1:  
Let . The problem is asking us to find .
Let and .
Then, .
Step 2:  
If we take the derivative of both sides of the last equation, we get by the Chain Rule.
Step 3:  
Now, and by the Fundamental Theorem of Calculus, Part 1.
Since , we have

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
Step 2:  
So, we get
Final Answer:  
(a)
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,
(b)
(c)

Return to Sample Exam