Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we write <math>\int\sin^3x\cos^2xdx=\int (\sin x) \sin^2x\cos^2xdx</math>.
+
|First, we write <math>\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>.
 
|-
 
|-
 
|Using the identity <math>\sin^2x+\cos^2x=1</math>, we get <math>\sin^2x=1-\cos^2x</math>. If we use this identity, we have
 
|Using the identity <math>\sin^2x+\cos^2x=1</math>, we get <math>\sin^2x=1-\cos^2x</math>. If we use this identity, we have
 
|-
 
|-
|<math>\int\sin^3x\cos^2xdx=\int (\sin x) (1-\cos^2x)\cos^2xdx=\int (\cos^2x-\cos^4x)\sin(x)dx</math>.
+
|<math>\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx</math>.
 
|-
 
|-
 
|
 
|
Line 30: Line 30:
 
|Now, we use u substitution. Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>. Therefore,  
 
|Now, we use u substitution. Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>. Therefore,  
 
|-
 
|-
|<math>\int\sin^3x\cos^2xdx=\int -(u^2-u^4)du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
+
|<math>\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
  

Revision as of 15:13, 31 January 2016

Evaluate the integral:


Foundations:  
Review u substitution
Trig identities

Solution:

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
.
Step 2:  
Now, we use u substitution. Let . Then, . Therefore,
Final Answer:  

Return to Sample Exam