Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The average value of a function <math>f(x)</math> on an interval <math>[a,b]</math> is given by <math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)dx</math>.  
+
|The average value of a function <math>f(x)</math> on an interval <math>[a,b]</math> is given by <math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.  
 
|}
 
|}
  
Line 16: Line 16:
 
|Using the formula given in the Foundations sections, we have:
 
|Using the formula given in the Foundations sections, we have:
 
|-
 
|-
|<math>f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4dx=\int_0^2 x^3(1+x^2)^4dx</math>  
+
|<math>f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx</math>  
 
|}
 
|}
  
Line 26: Line 26:
 
|We need to change the bounds on the integral. We have <math>u_1=1+0^2=1</math> and <math>u_2=1+2^2=5</math>.
 
|We need to change the bounds on the integral. We have <math>u_1=1+0^2=1</math> and <math>u_2=1+2^2=5</math>.
 
|-
 
|-
|So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x x^2 (1+x^2)^4 dx=\frac{1}{2}\int_1^5(u-1)u^4du=\frac{1}{2}\int_1^5(u^5-u^4)du</math>.
+
|So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>.
 
|}
 
|}
  

Revision as of 15:08, 31 January 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by .

Solution:

Step 1:  
Using the formula given in the Foundations sections, we have:
Step 2:  
Now, we use substitution. Let . Then, and . Also, .
We need to change the bounds on the integral. We have and .
So, the integral becomes .
Step 3:  
We integrate to get
Step 4:  
We evaluate to get
.
Final Answer:  

Return to Sample Exam