Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|1)
+
|?
 +
|}
 +
 
 +
'''Solution:'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1:  
 +
|-
 +
|The Fundamental Theorem of Calculus has two parts.
 +
|-
 +
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|2)  
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
 
|-
 
|-
 +
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 
|-
 
|-
|Answers:
+
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|1)
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 
|-
 
|-
|2)  
+
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
 
|}
 
|}
  
'''Solution:'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1: &nbsp;  
+
!Step 2: &nbsp;
 
|-
 
|-
|
+
|First, we have <math>F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}du</math>.
 
|-
 
|-
|  
+
|Now, let <math>g(x)=\cos(x)</math> and <math>G(x)=\int_5^x \frac{1}{1+u^{10}}du</math>
 
|-
 
|-
|
+
|So, <math>F(x)=-G(g(x))</math>.
 
|-
 
|-
|
+
|Hence, <math>F'(x)=-G'(g(x))g'(x)</math>.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Now, <math>g'(x)=-\sin(x)</math>.
 
|-
 
|-
|
+
| By the Fundamental Theorem of Calculus, <math>G'(x)=\frac{1}{1+x^{10}}</math>.
 
|-
 
|-
|
+
|Hence, <math>F'(x)=-\frac{1}{1+\cos^{10}x}(-\sin(x))=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|-
 
|-
 
|
 
|
Line 47: Line 56:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|'''The Fundamental Theorem of Calculus, Part 1'''
 +
|-
 +
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
 +
|-
 +
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 +
|-
 +
|'''The Fundamental Theorem of Calculus, Part 2'''
 +
|-
 +
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 +
|-
 +
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
 
|-
 
|-
|  
+
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:31, 31 January 2016

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Foundations:  
?

Solution:

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,
Step 2:  
First, we have .
Now, let and
So, .
Hence, .
Step 3:  
Now, .
By the Fundamental Theorem of Calculus, .
Hence,
Final Answer:  
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,

Return to Sample Exam