Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We proceed using integration by parts. Let <math>u=\sin(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=2\cos(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>. |
+ | |- | ||
+ | |So, we get | ||
+ | |- | ||
+ | |<math>\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)dx</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |Now, we need to use integration by parts again. Let <math>u=\cos(2x)</math> and <math>dv=e^{-2x}dx</math>. Then, <math>du=-2\sin(2x)dx</math> and <math>v=\frac{e^{-2x}}{-2}</math>. | ||
|- | |- | ||
− | | | + | |So, we get |
|- | |- | ||
− | | | + | |<math>\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)dx</math>. |
|- | |- | ||
| | | | ||
Line 24: | Line 34: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 3: |
+ | |- | ||
+ | |Notice that the integral on the right of the last equation is the same integral that we had at the beginning. | ||
+ | |- | ||
+ | |So, if we add the integral on the right to the other side of the equation, we get | ||
|- | |- | ||
− | | | + | |<math>2\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math>. |
|- | |- | ||
− | | | + | |Now, we divide both sides by 2 to get |
|- | |- | ||
− | | | + | |<math>\int e^{-2x}\sin (2x)dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math>. |
|- | |- | ||
− | | | + | |Thus, the final answer is <math>\int e^{-2x}\sin (2x)dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> |
|} | |} | ||
Line 38: | Line 52: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | |<math>\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math> |
− | |||
− | |||
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:41, 31 January 2016
Evaluate the integral:
Foundations: |
---|
Review integration by parts |
Solution:
Step 1: |
---|
We proceed using integration by parts. Let and . Then, and . |
So, we get |
Step 2: |
---|
Now, we need to use integration by parts again. Let and . Then, and . |
So, we get |
. |
Step 3: |
---|
Notice that the integral on the right of the last equation is the same integral that we had at the beginning. |
So, if we add the integral on the right to the other side of the equation, we get |
. |
Now, we divide both sides by 2 to get |
. |
Thus, the final answer is |
Final Answer: |
---|