Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 7: | Line 7: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |Trig identity | ||
|- | |- | ||
| − | |1 | + | |U substitution |
| + | |} | ||
| + | |||
| + | '''Solution:''' | ||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 1: | ||
|- | |- | ||
| − | |2) | + | |First, we write <math>\int \tan^4(x)dx=\int \tan^2(x) \tan^2(x)dx</math>. |
|- | |- | ||
| + | |Using the trig identity <math>\sec^2(x)=\tan^2(x)+1</math>, we have <math>\tan^2(x)=\sec^2(x)-1</math>. | ||
|- | |- | ||
| − | | | + | |Plugging in the last identity into one of the <math>\tan^2(x)</math>, we get |
|- | |- | ||
| − | |1) | + | |<math>\int \tan^4(x)dx=\int \tan^2(x) (\sec^2(x)-1)dx=\int \tan^2(x)\sec^2(x)dx-\int \tan^2(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math> |
|- | |- | ||
| − | | | + | |using the identity again on the last equality |
|} | |} | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step | + | !Step 2: |
|- | |- | ||
| − | | | + | |So, we have <math>\int \tan^4(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math>. |
|- | |- | ||
| − | | | + | |For the first integral, we need to use substitution. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2(x)dx</math>. |
|- | |- | ||
| − | | | + | |So, we have |
|- | |- | ||
| − | | | + | |<math>\int \tan^4(x)dx=\int u^2du-\int (\sec^2(x)-1)dx</math>. |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step | + | !Step 3: |
| − | |||
| − | |||
|- | |- | ||
| − | | | + | |We integrate to get |
|- | |- | ||
| − | | | + | | <math>\int \tan^4(x)dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
| − | |||
| − | |||
|} | |} | ||
| Line 48: | Line 51: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | |<math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
| − | |||
| − | |||
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 12:33, 27 January 2016
Evaluate the integral:
| Foundations: |
|---|
| Trig identity |
| U substitution |
Solution:
| Step 1: |
|---|
| First, we write . |
| Using the trig identity , we have . |
| Plugging in the last identity into one of the , we get |
| using the identity again on the last equality |
| Step 2: |
|---|
| So, we have . |
| For the first integral, we need to use substitution. Let . Then, . |
| So, we have |
| . |
| Step 3: |
|---|
| We integrate to get |
| Final Answer: |
|---|