Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|1)
+
|
 +
|}
 +
 
 +
'''Solution:'''
 +
 
 +
'''(a)'''
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1:  
 
|-
 
|-
|2)
+
|The Fundamental Theorem of Calculus has two parts.
 
|-
 
|-
 +
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Answers:
+
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
 
|-
 
|-
|1)
+
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 
|-
 
|-
|2)  
+
|'''The Fundamental Theorem of Calculus, Part 2'''
 +
|-
 +
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 +
|-
 +
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
 
|}
 
|}
  
'''Solution:'''
+
'''(b)'''
 +
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|  
 
|-
 
|-
|  
+
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
 
|
 
|
Line 42: Line 60:
 
|-
 
|-
 
|
 
|
 +
|}
 +
 +
'''(c)'''
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 +
|-
 +
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 xdx=\left.\tan(x)\right|_0^{\frac{\pi}{4}}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|So, we get
 +
|-
 +
|<math>\int_{0}^{\frac{\pi}{4}}\sec^2 xdx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>
 
|-
 
|-
 
|
 
|
Line 49: Line 85:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|'''(a)'''
 +
|-
 +
|'''The Fundamental Theorem of Calculus, Part 1'''
 +
|-
 +
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)dt</math>.
 +
|-
 +
|Then, <math>F</math> is a differential function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
 +
|-
 +
|'''The Fundamental Theorem of Calculus, Part 2'''
 +
|-
 +
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
 +
|-
 +
|Then, <math>\int_a^b f(x)dx=F(b)-F(a)</math>
 +
|-
 +
|'''(b)'''
 
|-
 
|-
|  
+
|'''(c)''' <math>1</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:56, 27 January 2016

This problem has three parts:

a) State the fundamental theorem of calculus.
b) Compute
c) Evaluate


Foundations:  

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,

(b)

Step 1:  
The Fundamental Theorem of Calculus, Part 1
Step 2:  

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
Step 2:  
So, we get
Final Answer:  
(a)
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differential function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,
(b)
(c)

Return to Sample Exam