Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Since <math>(1+x^2)^2=1+2x^2+x^4</math>, we have
+
|Now, we use substitution. Let <math>u=1+x^2</math>. Then, <math>du=2x dx</math> and <math>\frac{du}{2}=xdx</math>. Also, <math>x^2=u-1</math>.
 
|-
 
|-
|<math>(1+x^2)^4=(1+x^2)^2(1+x^2)^2=(1+2x^2+x^4)(1+2x^2+x^4)=1+4x^2+6x^4+4x^6+x^8</math>.
+
|We need to change the bounds on the integral. We have <math>u_1=1+0^2=1</math> and <math>u_2=1+2^2=5</math>.
 
|-
 
|-
|So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x^3(1+4x^2+6x^4+4x^6+x^8)dx</math>
+
|So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x x^2 (1+x^2)^4 dx=\frac{1}{2}\int_1^5(u-1)u^4du=\frac{1}{2}\int_1^5(u^5-u^4)du</math>.
 
|}
 
|}
  
Line 32: Line 32:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|We distribute to get
+
|We integrate to get
 
|-
 
|-
|<math>f_{\text{avg}}=\int_0^2 x^3(1+4x^2+6x^4+4x^6+x^8)dx=\int_0^2 (x^3+4x^5+6x^7+4x^9+x^{11})dx</math>.
+
|<math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5</math>
 
|-
 
|-
|Now, we integrate to get  
+
|
 +
|-
 +
|
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|We evaluate to get
 +
|-
 +
|<math>f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>.
 +
|-
 +
|
 
|-
 
|-
|<math>f_{\text{avg}}=\left.\frac{x^4}{4}+4\frac{2x^6}{3}+\frac{3x^8}{4}+\frac{2x^{10}}{5}+\frac{x^{12}}{12}\right|_{0}^{2}</math>
+
|
 
|}
 
|}
  
Line 44: Line 56:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|<math>\frac{4948}{5}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:19, 26 January 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by .

Solution:

Step 1:  
Using the formula given in the Foundations sections, we have:
Step 2:  
Now, we use substitution. Let . Then, and . Also, .
We need to change the bounds on the integral. We have and .
So, the integral becomes .
Step 3:  
We integrate to get
Step 4:  
We evaluate to get
.
Final Answer:  

Return to Sample Exam