Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 26: Line 26:
 
|<math>(1+x^2)^4=(1+x^2)^2(1+x^2)^2=(1+2x^2+x^4)(1+2x^2+x^4)=1+4x^2+6x^4+4x^6+x^8</math>.
 
|<math>(1+x^2)^4=(1+x^2)^2(1+x^2)^2=(1+2x^2+x^4)(1+2x^2+x^4)=1+4x^2+6x^4+4x^6+x^8</math>.
 
|-
 
|-
|
+
|So, the integral becomes <math>f_{\text{avg}}=\int_0^2 x^3(1+4x^2+6x^4+4x^6+x^8)dx</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|We distribute to get
 +
|-
 +
|<math>f_{\text{avg}}=\int_0^2 x^3(1+4x^2+6x^4+4x^6+x^8)dx=\int_0^2 (x^3+4x^5+6x^7+4x^9+x^{11})dx</math>.
 +
|-
 +
|Now, we integrate to get
 +
|-
 +
|<math>f_{\text{avg}}=\left.\frac{x^4}{4}+4\frac{2x^6}{3}+\frac{3x^8}{4}+\frac{2x^{10}}{5}+\frac{x^{12}}{12}\right|_{0}^{2}</math>
 
|}
 
|}
  

Revision as of 15:53, 26 January 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by .

Solution:

Step 1:  
Using the formula given in the Foundations sections, we have:
Step 2:  
Since , we have
.
So, the integral becomes
Step 3:  
We distribute to get
.
Now, we integrate to get
Final Answer:  

Return to Sample Exam