Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|1)
+
|The average value of a function <math>f(x)</math> on an interval <math>[a,b]</math> is given by <math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)dx</math>.
|-
 
|2)  
 
|-
 
|-
 
|Answers:
 
|-
 
|1)
 
|-
 
|2)  
 
 
|}
 
|}
  
Line 23: Line 14:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Using the formula given in the Foundations sections, we have:
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|<math>f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4dx=\int_0^2 x^3(1+x^2)^4dx</math>
 
|}
 
|}
  

Revision as of 15:25, 26 January 2016

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by .

Solution:

Step 1:  
Using the formula given in the Foundations sections, we have:
Step 2:  
Final Answer:  

Return to Sample Exam