Difference between revisions of "Implicit Differentiation"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
  
 
== Background ==
 
== Background ==
So far, you may only have differentiated functions written in the form
+
 
<math>y=f\left(x\right)</math>. But some functions are better described by an
+
So far, you may only have differentiated functions written in the form <math style="vertical-align: -5px">y=f(x)</math>. But some functions are better described by an equation involving <math>x</math> and <math style="vertical-align: -4px">y</math>. For example, <math style="vertical-align: -5px">x^{2}+y^{2}=16</math> describes the graph of a circle with center <math>\left(0,0\right)</math> and radius 4, and is really the graph of two functions: <math style="vertical-align: -5px">y=\pm\sqrt{16-x^{2}}</math>.
equation involving <math>x</math> and <math>y</math>. For example, <math>x^{2}+y^{2}=16</math> describes
 
the graph of a circle with center <math>\left(0,0\right)</math> and radius 4,
 
and is really the graph of two functions: <math>y=\pm\sqrt{16-x^{2}}</math>.
 
 
   
 
   
Sometimes, functions described by equations in <math>x</math> and <math>y</math> are too hard
+
Sometimes, functions described by equations in <math style="vertical-align: 0px">x</math> and <math style="vertical-align: -5px">y</math> are too hard to solve for <math style="vertical-align: -5px">y</math>, for example <math style="vertical-align: -5px">x^{3}+y^{3}=6xy</math>. This equation really describes 3 different functions of x, whose graph is the curve:
to solve for <math>y</math>, for example <math>x^{3}+y^{3}=6xy</math>. This equation really describes 3 different functions of x, whose graph
+
 
is the curve:
+
We want to find derivatives of these functions without having to solve for <math style="vertical-align: -5px">y</math> explicitly. We do this by implicit differentiation. The process is to take the derivative of both sides of the given equation with respect to <math>x</math>, and then do some algebra steps to solve for <math style="vertical-align: -5px">y'</math> (or <math>\dfrac{dy}{dx}</math> if you prefer), keeping in mind that <math style="vertical-align: -5px">y</math> is a function of <math>x</math> throughout the equation.
 +
 
 +
 
 +
== Warm-up exercises ==
 +
 
 +
Given that <math style="vertical-align: -5px">y</math> is a function of <math>x</math>, find the derivative of the
 +
following functions with respect to <math>x</math>.
 +
 
 +
1. <math style="vertical-align: -5px">y^{2}</math>
 +
 
 +
Solution: <math style="vertical-align: -5px">2yy'</math>
 +
 
 +
Reason: Think <math style="vertical-align: -5px">y=f(x)</math> and view it as <math style="vertical-align: -5px">(f(x))^{2}</math> to see that the
 +
derivative is <math style="vertical-align: -5px">2f(x)f'(x)</math> by the chain rule, but write it as <math style="vertical-align: -5px">2yy'</math>.
 +
 
 +
2. <math style="vertical-align: -5px">xy</math>
 +
 
 +
Solution: <math style="vertical-align: -5px">xy'+y</math>
 +
 
 +
Reason: <math>x</math> and <math style="vertical-align: -5px">y</math> are both functions of <math>x</math>, and they are being
 +
multiplied together, so the product rule says it's <math style="vertical-align: -5px">x\cdot y'+y\cdot1</math>.
 +
 
 +
3. <math style="vertical-align: -5px">\cos y</math>
 +
 
 +
Solution: <math style="vertical-align: -5px">-y'\sin y</math>
 +
 
 +
Reason: The function <math style="vertical-align: -5px">y</math> is inside of the cosine function, so the
 +
chain rule gives <math style="vertical-align: -5px">(-\sin y)\cdot y'</math>.
 +
 
 +
4. <math style="vertical-align: -5px">\sqrt{x+y}</math>
  
We want to find derivatives of these functions without having to solve
+
Solution: <math style="vertical-align: -5px">\frac{1+y'}{2\sqrt{x+y}}</math>
for <math>y</math> explicitly. We can do this by implicit differentiation,
 
in which we take the derivative of both sides of our equation with respect
 
to <math>x</math>, and do some algebra steps to solve for <math>y'</math> (or <math>\dfrac{dy}{dx}</math>
 
if you prefer), keeping in mind that <math>y</math> is a function of <math>x</math> throughout
 
the equation.
 
  
 +
Reason: Write it as <math style="vertical-align: -5px">(x+y)^{\frac{1}{2}}</math>, and use the chain rule
 +
to get <math style="vertical-align: -15px">\frac{1}{2}\left(x+y\right)^{-\frac{1}{2}}\cdot\left(1+y'\right)</math>,
 +
then simplify.
  
 
== Example 1 ==
 
== Example 1 ==

Revision as of 22:00, 17 November 2015

Background

So far, you may only have differentiated functions written in the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} . But some functions are better described by an equation involving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} . For example, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2}+y^{2}=16} describes the graph of a circle with center Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(0,0\right)} and radius 4, and is really the graph of two functions: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\pm\sqrt{16-x^{2}}} .

Sometimes, functions described by equations in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} are too hard to solve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} , for example Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{3}+y^{3}=6xy} . This equation really describes 3 different functions of x, whose graph is the curve:

We want to find derivatives of these functions without having to solve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} explicitly. We do this by implicit differentiation. The process is to take the derivative of both sides of the given equation with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , and then do some algebra steps to solve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'} (or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{dy}{dx}} if you prefer), keeping in mind that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is a function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} throughout the equation.


Warm-up exercises

Given that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is a function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , find the derivative of the following functions with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} .

1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^{2}}

Solution: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2yy'}

Reason: Think Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} and view it as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x))^{2}} to see that the derivative is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2f(x)f'(x)} by the chain rule, but write it as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2yy'} .

2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xy}

Solution: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xy'+y}

Reason: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} are both functions of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , and they are being multiplied together, so the product rule says it's Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\cdot y'+y\cdot1} .

3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos y}

Solution: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -y'\sin y}

Reason: The function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is inside of the cosine function, so the chain rule gives Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\sin y)\cdot y'} .

4. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x+y}}

Solution: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1+y'}{2\sqrt{x+y}}}

Reason: Write it as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x+y)^{\frac{1}{2}}} , and use the chain rule to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\left(x+y\right)^{-\frac{1}{2}}\cdot\left(1+y'\right)} , then simplify.

Example 1

Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'} if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin y-3x^{2}y=8} .

[Think Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f\left(x\right)} and momentarily view the equation as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin f\left(x\right)-3x^{2}f\left(x\right)=8} to realize that the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin f\left(x\right)} term requires the chain rule and the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x^{2}f\left(x\right)} term needs the product rule when differentiating, while the derivative of 8 is just 0.]

Then we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \sin y-3x^{2}y & = & 8\\ \left(\cos y\right)\cdot y'-\left(3x^{2}y'+6xy\right) & = & 0\quad \text{(derivative of both sides with respect to x)}\\ \left(\cos y\right)\cdot y'-3x^{2}y' & = & 6xy\\ \left(\cos y-3x^{2}\right)y' & = & 6xy\\ y' & = & \dfrac{6xy}{\cos y-3x^{2}} \end{array}}


Example 2

Find the equation of the tangent line to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan y=\dfrac{y}{x}} at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{\pi}{4},\frac{\pi}{4}\right)} .

We first compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'} by implicit differentiation. Note the derivative of the right side requires the quotient rule.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \tan y & = & \dfrac{y}{x}\\ \left(\sec^{2}y\right)\cdot y' & = & \dfrac{xy'-y}{x^{2}}\\ x^{2}y'\cdot\sec^{2}y & = & xy'-y\\ x^{2}y'\cdot\sec^{2}y-xy' & = & -y\\ y'\left(x^{2}\sec^{2}y-x\right) & = & -y\\ y' & = & \dfrac{-y}{x^{2}\sec^{2}y-x} \end{array}}


At the point we have and . Plugging these into our equation for gives


This means the slope of the tangent line at is , and a point on this line is . Using the point-slope form of a line, we have


Example 3

Find if .

Use implicit differentiation to find first:


Now is just the derivative of with respect to (remember ). This will require the chain rule. Note that we already found the derivative of to be . So


But we mustn't leave in our final answer. So, plug back in to get


as our final answer.