Difference between revisions of "005 Sample Final A, Question 15"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
|First, let <math>\theta=\tan^{-1}(x)</math>. Then, <math>\tan(\theta)=x</math>.
 
|}
 
|}
  
Line 10: Line 10:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|  
+
| Now, we draw the right triangle corresponding to <math>\theta</math>. Two of the side lengths are 1 and x and the hypotenuse has length <math>\sqrt{x^2+1}</math>.
 
|}
 
|}
  
Line 16: Line 16:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|  
+
| Since <math>\cos(\theta)=\frac{\mathrm{opposite}}{\mathrm{hypotenuse}}</math>, <math>\cos(\tan^{-1}(x))=\cos(\theta)=\frac{1}{\sqrt{x^2+1}}</math>.
 
|-
 
|-
 
|  
 
|  
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 4:
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 5:
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 40: Line 24:
 
! Final Answer:
 
! Final Answer:
 
|-
 
|-
|  
+
| <math>\frac{1}{\sqrt{x^2+1}}</math>
 
|}
 
|}

Revision as of 12:35, 20 May 2015

Question Find an equivalent algebraic expression for the following,

Step 1:
First, let . Then, .
Step 2:
Now, we draw the right triangle corresponding to . Two of the side lengths are 1 and x and the hypotenuse has length .
Step 3:
Since , .
Final Answer: