Difference between revisions of "005 Sample Final A, Question 13"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Give the exact value of the following if its defined, otherwise, write undefined. <br> <math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\ri...") |
Kayla Murray (talk | contribs) |
||
Line 4: | Line 4: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Step 1: |
|- | |- | ||
− | |a) | + | | For (a), we want an angle <math>\theta</math> such that <math>\sin(\theta)=2</math>. Since <math>-1\leq \sin (\theta)\leq 1</math>, it is impossible |
|- | |- | ||
− | | | + | |for <math>\sin(\theta)=2</math>. So, <math>\sin^{-1}(2)</math> is undefined. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
|- | |- | ||
− | | | + | | For (b), we need to find the reference angle for <math>\frac{-32\pi}{3}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the |
|- | |- | ||
− | | | + | |reference angle <math>\frac{4\pi}{3}</math>. So, <math>\sin\left(\frac{-32\pi}{3}\right)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
|- | |- | ||
− | | | + | | For (c), we need to find the reference angle for <math>\frac{-17\pi}{6}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the |
|- | |- | ||
− | | | + | |reference angle <math>\frac{7\pi}{6}</math>. Since <math>\cos\left(\frac{7\pi}{6}\right)=\frac{-\sqrt{3}}{2}</math>, we have |
+ | |- | ||
+ | |<math>\sec\left(\frac{-17\pi}{6}\right)=\sec\left(\frac{7\pi}{6}\right)=\frac{2}{-\sqrt{3}}=\frac{-2\sqrt{3}}{3}</math>. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
+ | |- | ||
+ | |a) undefined | ||
+ | |- | ||
+ | |b) <math>\frac{-\sqrt{3}}{2}</math> | ||
+ | |- | ||
+ | |c)<math>\frac{-2\sqrt{3}}{3}</math> | ||
|} | |} |
Revision as of 15:59, 19 May 2015
Question Give the exact value of the following if its defined, otherwise, write undefined.
Step 1: |
---|
For (a), we want an angle such that . Since , it is impossible |
for . So, is undefined. |
Step 2: |
---|
For (b), we need to find the reference angle for . If we add multiples of to this angle, we get the |
reference angle . So, . |
Step 3: |
---|
For (c), we need to find the reference angle for . If we add multiples of to this angle, we get the |
reference angle . Since , we have |
. |
Final Answer: |
---|
a) undefined |
b) |
c) |