Difference between revisions of "005 Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
&nbsp;&nbsp;&nbsp;&nbsp;f. (True/False) The function <math> \log_a(x)</math> is defined for all real numbers.<br>
 
&nbsp;&nbsp;&nbsp;&nbsp;f. (True/False) The function <math> \log_a(x)</math> is defined for all real numbers.<br>
  
2.Find the domain of the following function. Your answer should be in interval notation <math> f(x) = \frac{1}{\sqrt{x^2-x-2}}</math> <br>
+
<span class = "biglink">[[005 Sample Final A, Question 2|&nbsp;Question 2&nbsp;]]</span>Find the domain of the following function. Your answer should be in interval notation <math> f(x) = \frac{1}{\sqrt{x^2-x-2}}</math> <br>
  
3. Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math>
+
<span class = "biglink">[[005 Sample Final A, Question 3|&nbsp;Question 3&nbsp;]]</span> Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math>
  
4. Find the inverse of the following function <math> f(x) = \frac{3x}{2x-1}</math>
+
<span class = "biglink">[[005 Sample Final A, Question 4|&nbsp;Question 4&nbsp;]]</span> Find the inverse of the following function <math> f(x) = \frac{3x}{2x-1}</math>
  
5. Solve the following inequality. Your answer should be in interval notation. <math>\frac{3x+5}{x+2}\ge 2</math>
+
<span class = "biglink">[[005 Sample Final A, Question 5|&nbsp;Question 5&nbsp;]]</span> Solve the following inequality. Your answer should be in interval notation. <math>\frac{3x+5}{x+2}\ge 2</math>
  
6. Factor the following polynomial completely, &nbsp;&nbsp;&nbsp;&nbsp;<math>p(x) = x^4 + x^3 + 2x-4 </math>
+
<span class = "biglink">[[005 Sample Final A, Question 6|&nbsp;Question 6&nbsp;]]</span> Factor the following polynomial completely, &nbsp;&nbsp;&nbsp;&nbsp;<math>p(x) = x^4 + x^3 + 2x-4 </math>
  
7. Solve the following equation, &nbsp;&nbsp;&nbsp;&nbsp; <math> 2\log_5(x) = 3\log_5(4)</math>
+
<span class = "biglink">[[005 Sample Final A, Question 7|&nbsp;Question 7&nbsp;]]</span> Solve the following equation, &nbsp;&nbsp;&nbsp;&nbsp; <math> 2\log_5(x) = 3\log_5(4)</math>
  
8. Solve the following equation, &nbsp;&nbsp;&nbsp;&nbsp; <math> 3^{2x} + 3^x -2 = 0 </math>
+
<span class = "biglink">[[005 Sample Final A, Question 8|&nbsp;Question 8&nbsp;]]</span> Solve the following equation, &nbsp;&nbsp;&nbsp;&nbsp; <math> 3^{2x} + 3^x -2 = 0 </math>
  
9. Solve the following system of equations <br>
+
<span class = "biglink">[[005 Sample Final A, Question 9|&nbsp;Question 9&nbsp;]]</span> Solve the following system of equations <br>
 
<center><math>  \begin{align} 2x + 3y  &= & 1\\ -x + y & = & -3\end{align}</math></center>
 
<center><math>  \begin{align} 2x + 3y  &= & 1\\ -x + y & = & -3\end{align}</math></center>
  
10. Write the partial fraction decomposition of the following, <center> <math> \frac{x+2}{x^3-2x^2+x}</math></center>
+
<span class = "biglink">[[005 Sample Final A, Question 10|&nbsp;Question 10&nbsp;]]</span> Write the partial fraction decomposition of the following, <center> <math> \frac{x+2}{x^3-2x^2+x}</math></center>
  
11. Solve the following equation in the interval <math> [0, 2\pi)</math> <br>
+
<span class = "biglink">[[005 Sample Final A, Question 11|&nbsp;Question 11&nbsp;]]</span> Solve the following equation in the interval <math> [0, 2\pi)</math> <br>
 
<center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center>
 
<center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center>
  
12. Given that <math>\sec(\theta) = -2</math> and <math>\tan(\theta) > 0 </math>, find the exact values of the remaining trig functions.
+
<span class = "biglink">[[005 Sample Final A, Question 12|&nbsp;Question 12&nbsp;]]</span> Given that <math>\sec(\theta) = -2</math> and <math>\tan(\theta) > 0 </math>, find the exact values of the remaining trig functions.
  
13. Give the exact value of the following if its defined, otherwise, write undefined. <br>
+
<span class = "biglink">[[005 Sample Final A, Question 13|&nbsp;Question 13&nbsp;]]</span> Give the exact value of the following if its defined, otherwise, write undefined. <br>
 
<math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\right) \qquad \qquad (c)\sec\left(\frac{-17\pi}{6}\right)</math>
 
<math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\right) \qquad \qquad (c)\sec\left(\frac{-17\pi}{6}\right)</math>
  
14. Prove the following identity, <br>
+
<span class = "biglink">[[005 Sample Final A, Question 14|&nbsp;Question 14&nbsp;]]</span>Prove the following identity, <br>
 
<center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center>
 
<center><math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}</math></center>
  
15. Find an equivalent algebraic expression for the following, <center><math> \cos(\tan^{-1}(x))</math></center>
+
<span class = "biglink">[[005 Sample Final A, Question 15|&nbsp;Question 15&nbsp;]]</span> Find an equivalent algebraic expression for the following, <center><math> \cos(\tan^{-1}(x))</math></center>
  
16. Graph the following, <center><math> -x^2+4y^2-2x-16y+11=0</math></center>
+
<span class = "biglink">[[005 Sample Final A, Question 16|&nbsp;Question 16&nbsp;]]</span> Graph the following, <center><math> -x^2+4y^2-2x-16y+11=0</math></center>
  
17. Graph the following function, <center><math>f(x) = \log_2(x+1) + 2</math></center> <br>
+
<span class = "biglink">[[005 Sample Final A, Question 17|&nbsp;Question 17&nbsp;]]</span> Graph the following function, <center><math>f(x) = \log_2(x+1) + 2</math></center> <br>
 
Make sure to label any asymptotes, and at least two points on the graph.
 
Make sure to label any asymptotes, and at least two points on the graph.
  
18. Graph the following function, <center><math>f(x) = \left(\frac{1}{3}\right)^{x+1} + 1</math></center> <br>
+
<span class = "biglink">[[005 Sample Final A, Question 18|&nbsp;Question 18&nbsp;]]</span> Graph the following function, <center><math>f(x) = \left(\frac{1}{3}\right)^{x+1} + 1</math></center> <br>
 
Make sure to label any asymptotes, and at least two points on the graph.
 
Make sure to label any asymptotes, and at least two points on the graph.
  
19. Consider the following function, <center><math>f(x) = -\sin\left(3x+\frac{\pi}{2}\right)+1</math></center><br>
+
<span class = "biglink">[[005 Sample Final A, Question 19|&nbsp;Question 19&nbsp;]]</span> Consider the following function, <center><math>f(x) = -\sin\left(3x+\frac{\pi}{2}\right)+1</math></center><br>
  
 
&nbsp;&nbsp;&nbsp;&nbsp; a. What is the amplitude?<br>
 
&nbsp;&nbsp;&nbsp;&nbsp; a. What is the amplitude?<br>
Line 55: Line 55:
 
&nbsp;&nbsp;&nbsp;&nbsp; e. Graph one cycle of f(x). Make sure to label five key points.
 
&nbsp;&nbsp;&nbsp;&nbsp; e. Graph one cycle of f(x). Make sure to label five key points.
  
20. Consider the following rational function,
+
<span class = "biglink">[[005 Sample Final A, Question 20|&nbsp;Question 20&nbsp;]]</span> Consider the following rational function,
 
<center><math>f(x) = \frac{x^2+x-2}{x^2-1}</math></center> <br>
 
<center><math>f(x) = \frac{x^2+x-2}{x^2-1}</math></center> <br>
  
Line 63: Line 63:
 
&nbsp;&nbsp;&nbsp;&nbsp; d. Graph f(x). Make sure to include the information you found above.
 
&nbsp;&nbsp;&nbsp;&nbsp; d. Graph f(x). Make sure to include the information you found above.
  
21. Find the sum <br>
+
<span class = "biglink">[[005 Sample Final A, Question 21|&nbsp;Question 21&nbsp;]]</span> Find the sum <br>
 
<center><math> 5 + 9 + 13 + \cdots + 49 </math></center>
 
<center><math> 5 + 9 + 13 + \cdots + 49 </math></center>
  
22. Consider the following sequence, <br>
+
<span class = "biglink">[[005 Sample Final A, Question 22|&nbsp;Question 22&nbsp;]]</span> Consider the following sequence, <br>
 
<center><math> -3, 1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \cdots </math></center><br>
 
<center><math> -3, 1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \cdots </math></center><br>
 
&nbsp;&nbsp;&nbsp;&nbsp; a. Determine a formula for <math>a_n</math>, the n-th term of the sequence. <br>
 
&nbsp;&nbsp;&nbsp;&nbsp; a. Determine a formula for <math>a_n</math>, the n-th term of the sequence. <br>
 
&nbsp;&nbsp;&nbsp;&nbsp; b. Find the sum <math> \displaystyle{\sum_{k=1}^\infty a_k}</math>
 
&nbsp;&nbsp;&nbsp;&nbsp; b. Find the sum <math> \displaystyle{\sum_{k=1}^\infty a_k}</math>

Revision as of 08:42, 30 April 2015

 Question 1  Please circle either true or false,
    a. (True/False)In a geometric sequence, the common ratio is always positive.
    b. (True/False) A linear system of equations always has a solution.
    c. (True/False) Every function has an inverse.
    d. (True/False) Trigonometric equations do not always have unique solutions.
    e. (True/False) The domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \tan^{-1}(x)} is all real numbers.
    f. (True/False) The function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_a(x)} is defined for all real numbers.

 Question 2 Find the domain of the following function. Your answer should be in interval notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{1}{\sqrt{x^2-x-2}}}

 Question 3  Find f Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \circ} g and its domain if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}}

 Question 4  Find the inverse of the following function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{3x}{2x-1}}

 Question 5  Solve the following inequality. Your answer should be in interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3x+5}{x+2}\ge 2}

 Question 6  Factor the following polynomial completely,     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x) = x^4 + x^3 + 2x-4 }

 Question 7  Solve the following equation,      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\log_5(x) = 3\log_5(4)}

 Question 8  Solve the following equation,      Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3^{2x} + 3^x -2 = 0 }

 Question 9  Solve the following system of equations

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} 2x + 3y &= & 1\\ -x + y & = & -3\end{align}}

 Question 10  Write the partial fraction decomposition of the following,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x+2}{x^3-2x^2+x}}

 Question 11  Solve the following equation in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0, 2\pi)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)}

 Question 12  Given that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec(\theta) = -2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan(\theta) > 0 } , find the exact values of the remaining trig functions.

 Question 13  Give the exact value of the following if its defined, otherwise, write undefined.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\right) \qquad \qquad (c)\sec\left(\frac{-17\pi}{6}\right)}

 Question 14 Prove the following identity,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos(\theta)}{1+\sin(\theta)}}

 Question 15  Find an equivalent algebraic expression for the following,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\tan^{-1}(x))}

 Question 16  Graph the following,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x^2+4y^2-2x-16y+11=0}

 Question 17  Graph the following function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \log_2(x+1) + 2}


Make sure to label any asymptotes, and at least two points on the graph.

 Question 18  Graph the following function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left(\frac{1}{3}\right)^{x+1} + 1}


Make sure to label any asymptotes, and at least two points on the graph.

 Question 19  Consider the following function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = -\sin\left(3x+\frac{\pi}{2}\right)+1}


     a. What is the amplitude?
     b. What is the period?
     c. What is the phase shift?
     d. What is the vertical shift?
     e. Graph one cycle of f(x). Make sure to label five key points.

 Question 20  Consider the following rational function,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{x^2+x-2}{x^2-1}}


     a. What is the domain of f?
     b. What are the x and y-intercepts of f?
     c. What are teh vertical and horizontal asymptotes of f, if any? Does f have any holes?
     d. Graph f(x). Make sure to include the information you found above.

 Question 21  Find the sum

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 + 9 + 13 + \cdots + 49 }

 Question 22  Consider the following sequence,


     a. Determine a formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n} , the n-th term of the sequence.
     b. Find the sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\sum_{k=1}^\infty a_k}}