Difference between revisions of "004 Sample Final A, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
! Foundations
 
! Foundations
 
|-
 
|-
|
+
| How would you find the inverse for a simpler function like <math>f(x)=2x+4</math>
 
|-
 
|-
|
+
|Answer:
 
|-
 
|-
|Answers:
+
|You would replace <math>f(x)</math> with <math>y</math>. Then, switch <math>x</math> and <math>y</math>. Finally, we would solve for <math>y</math>.
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 21: Line 17:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
|We start by replacing <math>f(x)</math> with <y>.
 
|-
 
|-
|
+
|This leaves us with <math>y=\frac{3x-1}{4x+2}</math>
 
|}
 
|}
  
Line 29: Line 25:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|
+
|Now, we swap <math>x</math> and <math>y</math> to get <math>x=\frac{3y-1}{4y+2} </math>.
|-
 
|
 
 
|}
 
|}
  
Line 37: Line 31:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|
+
|Starting with <math>x=\frac{3y-1}{4y+2} </math>, we multiply both sides by <math>4y+2</math> to get
 
|-
 
|-
|
+
|<math>x(4y+2)=3y-1</math>. 
 
|-
 
|-
|
+
|Now, we need to get all the <math>y</math> terms on one side. So, adding 1 and <math>-4xy</math> to both sides we get
 +
|-
 +
|<math> 2x+1=3y-4xy</math>.
 
|}
 
|}
  
Line 47: Line 43:
 
! Step 4:
 
! Step 4:
 
|-
 
|-
|
+
|Factoring out <math>y</math>, we get <math> 2x+1=y(3-4x) </math>. Now, dividing by <math>(3-4x)</math>, we get
 +
|-
 +
|<math>\frac{2x+1}{3-4x}=y</math>. Replacing <math>y</math> with <math>f^{-1}(x)</math>, we arrive at the final answer
 
|-
 
|-
|
+
|<math>f^{-1}(x)=\frac{2x+1}{3-4x}</math>
 
|}
 
|}
  
Line 55: Line 53:
 
! Final Answer:
 
! Final Answer:
 
|-
 
|-
|
+
|<math>f^{-1}(x)=\frac{2x+1}{3-4x}</math>
 
|}
 
|}
  
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]
 
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]

Revision as of 18:23, 28 April 2015

Find for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{3x-1}{4x+2}}

Foundations
How would you find the inverse for a simpler function like Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=2x+4}
Answer:
You would replace Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} . Then, switch Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} . Finally, we would solve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} .


Solution:

Step 1:
We start by replacing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} with <y>.
This leaves us with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\frac{3x-1}{4x+2}}
Step 2:
Now, we swap Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{3y-1}{4y+2} } .
Step 3:
Starting with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{3y-1}{4y+2} } , we multiply both sides by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4y+2} to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(4y+2)=3y-1} .
Now, we need to get all the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} terms on one side. So, adding 1 and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4xy} to both sides we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x+1=3y-4xy} .
Step 4:
Factoring out Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x+1=y(3-4x) } . Now, dividing by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3-4x)} , we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2x+1}{3-4x}=y} . Replacing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)} , we arrive at the final answer
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)=\frac{2x+1}{3-4x}}
Final Answer:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)=\frac{2x+1}{3-4x}}

Return to Sample Exam