Difference between revisions of "Series - Tests for Convergence/Divergence"

From Grad Wiki
Jump to navigation Jump to search
Line 87: Line 87:
 
Like the Comparison Test and the Integral Test, it's fine if the first terms are kind of "wrong" - negative, for example - as long as they eventually wind up (for <math style="vertical-align: 0%">k>c</math> for a particular <math style="vertical-align: 0%">c</math>&thinsp;) meeting
 
Like the Comparison Test and the Integral Test, it's fine if the first terms are kind of "wrong" - negative, for example - as long as they eventually wind up (for <math style="vertical-align: 0%">k>c</math> for a particular <math style="vertical-align: 0%">c</math>&thinsp;) meeting
 
the requirements.
 
the requirements.
 
\hrulefill
 
  
 
== The Alternating Series Test ==
 
== The Alternating Series Test ==

Revision as of 22:19, 23 April 2015

This page is meant to provide guidelines for actually applying series convergence tests. Although no examples are given here, the requirements for each test are provided.

Important Series

There are two series that are important to know for a variety of reasons. In particular, they are useful for comparison tests.

Geometric series. These are series with a common ratio between adjacent terms which are usually written

These are convergent if , and divergent if . If it is convergent, we can find the sum by the formula

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\frac{a_{0}}{1-r},}

where is the first term in the series (if the index starts at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=2} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=6} , then "Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{0}} " is actually the first term Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{2}} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{6}} , respectively).


p-series. These are series of the form

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty}\frac{1}{k^{p}}.}

If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p>1} , then the series is convergent. On the other hand, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\leq1} , the p-series is divergent.

The Divergence Test

If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \lim_{k\rightarrow\infty}a_{k}\neq0,}} then the series/sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\infty}a_{k}} diverges.


Note: The opposite result doesn't allow you to conclude a series converges. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \lim_{k\rightarrow\infty}a_{k}=0}}  , it merely indicates the series might converge, and you still need to confirm it through another test.

In particular, the sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \frac{1}{k}\right\} } converges to zero, but the sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\infty}\frac{1}{k}}  , our harmonic series, diverges.

The Integral Test

Suppose the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is continuous, positive and decreasing on some interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [b,\infty)} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b\geq1} , and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{k}=f(k)} . Then the series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=b}^{\infty}a_{k}} is convergent if and only if for some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c\geq b} ,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{c}^{\infty}f(x)\, dx}

is convergent (not infinite).

Note: This test, like many of them, has a few specific requirements. In order to use it on a test, you need to state/show:

  • For all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\geq c} for some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c\geq b} , the function is positive. (Most of the time, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is just my starting index Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} ).
  • For all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\geq c} , the function is decreasing.
  • The integral is convergent (or divergent, if you're proving divergence).

Then, you can say, "By the Integral Test, the series is convergent (or divergent)."

I wrote this with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} instead of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} for a lower bound to indicate you only need to show the series and function are "eventually" decreasing, positive, etc. In other words, we don't care what happens at the beginning (or head) of a series - only at the end (or tail).

The Comparison Test

Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_{k}} is a series with positive terms, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} is a series with eventually positive terms. Then

  • If for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\geq c} for some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} greater than or equal to our starting index, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_{k}} is convergent, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} is convergent.
  • If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{k}\geq b_{k}} for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} b_{k}} is divergent, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{\infty} a_{k}} is divergent.


Note: Requirements for this test include showing (or at least stating):

  • For all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\geq c} for some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} greater than or equal to our starting index, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{k}} is positive. (Most of the time, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is just the starting index.)
  • For all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\geq c} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{k}\leq b_{k}} for convergence, or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{k}\geq b_{k}} for divergence.
  • (This is important) State why is convergent, such as a p-series with , or a geometric series with . Obviously, you would need to state why it is divergent if you're showing it's divergent.

Then, you can say, "By the Comparison Test, the series is convergent (or divergent)."

The Limit Comparison Test

Suppose and are series with positive terms. If where , then either both series converge, or both series diverge.

Additionally, if and converges, also converges. Similarly, if   and diverges, then also diverges.

Note: First of all, let's mention the fundamental idea here. If some series converges, then converges where is a constant. This test shows that one series eventually is just like the other one multiplied by a constant, and for that reason it will also converge/diverge if the one compared to converges/diverges. To use it, you need to state/show:

  • is always positive (really, non-negative).
  • .
  • State why is convergent, such as a p-series with , or a geometric series with . Obviously, you would need to state why it is divergent if you're showing it's divergent.

Then, you can say, "By the Limit Comparison Test, the series is convergent (or divergent)."

Like the Comparison Test and the Integral Test, it's fine if the first terms are kind of "wrong" - negative, for example - as long as they eventually wind up (for for a particular  ) meeting the requirements.

The Alternating Series Test

If a series $\sum a_{k}$ is \begin{enumerate} \item Alternating in sign, and \item ${\displaystyle \lim_{k\rightarrow0}}|a_{k}|=0,$ \end{enumerate} then the series is convergent.

\emph{\uline{Notes}}\emph{: }This is a fairly straightfoward test. You only need to do two things: \begin{enumerate} \item Mention the series is alternating (even though it's usually obvious). \item Show the limit converges to zero. \end{enumerate} \textbf{\uline{Then}}, you can say, ``By the Alternating Series Test, the series is convergent.

As an additional detail, if it fails to converge to zero, then you would say it diverges by the Divergence Test, \textbf{\uline{NOT}} the Alternating Series Test.

The Ratio Test

Let $\sum a_{k}$ be a series. Then: \begin{enumerate} \item if ${\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L<1,}$ the series is absolutely convergent (and therefore convergent),\\

\item if ${\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L>1}$ or ${\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L=\infty,}$ the series is divergent,\\

\item if ${\displaystyle \lim_{k\rightarrow\infty}\left|\frac{a_{k+1}}{a_{k}}\right|=L=1,}$ the Ratio Test is inconclusive.\\

\end{enumerate} \emph{\uline{Notes}}\emph{: }Both this and the Root Test have the least requirements. The Ratio Test \emph{\uline{does}} require that such a limit exists, so a series like \[ 0+1+0+\frac{1}{4}+0+\frac{1}{9}+\cdots \]

could not be assessed as written with the Ratio Test, as division

by zero is undefined. You might have to argue it's the same sum as \[ 1+\frac{1}{4}+\frac{1}{9}+\cdots, \]

and then you could apply the Ratio Test.


The Root Test

Let be a series. Then:

  • If the series is absolutely convergent (and therefore convergent).
  • If or

the series is divergent.

  • If , the Root Test is inconclusive.