Difference between revisions of "007B Sample Final 2"

From Grad Wiki
Jump to navigation Jump to search
Line 31: Line 31:
  
 
== [[007B_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[007B_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam">(a) Find the area of the surface obtained by rotating the arc of the curve
+
<span class="exam"> Evaluate the following integrals:
  
::<math>y^3=x</math>
+
<span class="exam">(a) &nbsp;<math>\int \frac{dx}{x^2\sqrt{x^2-16}}</math>
  
<span class="exam">between &nbsp;<math style="vertical-align: -5px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(1,1)</math>&nbsp; about the &nbsp;<math style="vertical-align: -4px">y</math>-axis.
+
<span class="exam">(b) &nbsp;<math>\int_{-\pi}^\pi \sin^3x\cos^3x~dx</math>
  
<span class="exam">(b) Find the length of the arc
+
<span class="exam">(c) &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx</math>
 
 
::<math>y=1+9x^{\frac{3}{2}}</math>
 
 
 
<span class="exam">between the points &nbsp;<math style="vertical-align: -5px">(1,10)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(4,73).</math>
 
  
 
== [[007B_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[007B_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==

Revision as of 00:01, 3 December 2017

This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

 Problem 2 

Consider the area bounded by the following two functions:

(a) Sketch the graphs and find their points of intersection.

(b) Find the area bounded by the two functions.

 Problem 3 

Find the volume of the solid obtained by rotating the region bounded by the curves    and    about the line  

 Problem 4 

Evaluate    (Suggestion: Sketch the graph.)

 Problem 5 

Evaluate the following integrals:

(a)  

(b)  

(c)  

 Problem 6 

Evaluate the following integrals:

(a)  

(b)  

(c)  

 Problem 7 

Evaluate the following integrals or show that they are divergent:

(a)  

(b)