Difference between revisions of "007B Sample Final 2"
Kayla Murray (talk | contribs) (Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.''' '''Click on the''' '''<span...") |
Kayla Murray (talk | contribs) (→ Problem 2 ) |
||
| Line 16: | Line 16: | ||
== [[007B_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[007B_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
| − | <span class="exam"> | + | <span class="exam">Consider the area bounded by the following two functions: |
| + | |||
| + | ::<math>y=\cos x \text{ and }y=2-\cos x,~0\le x\le 2\pi.</math> | ||
| + | |||
| + | <span class="exam">(a) Sketch the graphs and find their points of intersection. | ||
| + | |||
| + | <span class="exam">(b) Find the area bounded by the two functions. | ||
== [[007B_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | == [[007B_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
Revision as of 22:59, 2 December 2017
This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
(a) State both parts of the Fundamental Theorem of Calculus.
(b) Evaluate the integral
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{1}{\frac {d}{dx}}{\bigg (}e^{\tan ^{-1}(x)}{\bigg )}dx}
(c) Compute
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt}
Problem 2
Consider the area bounded by the following two functions:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\cos x \text{ and }y=2-\cos x,~0\le x\le 2\pi.}
(a) Sketch the graphs and find their points of intersection.
(b) Find the area bounded by the two functions.
Problem 3
Find the volume of the solid obtained by rotating the region bounded by the curves Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x^2} about the line Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=2.}
Problem 4
A city bordered on one side by a lake can be approximated by a semicircle of radius 7 miles, whose city center is on the shoreline. As we move away from the center along a radius the population density of the city can be approximated by:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(x)=25000e^{-0.15x}}
people per square mile. What is the population of the city?
Problem 5
(a) Find the area of the surface obtained by rotating the arc of the curve
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^3=x}
between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,1)} about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis.
(b) Find the length of the arc
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1+9x^{\frac{3}{2}}}
between the points Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,10)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (4,73).}
Problem 6
Evaluate the following integrals:
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{dx}{x^2\sqrt{x^2-16}}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\pi}^\pi \sin^3x\cos^3x~dx}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \frac{x-3}{x^2+6x+5}~dx}
Problem 7
Evaluate the following integrals or show that they are divergent:
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^\infty \frac{\ln x}{x^4}~dx}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx}