Difference between revisions of "009C Sample Midterm 3"

From Grad Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
<span class="exam">(a) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}</math>
 
<span class="exam">(a) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}</math>
  
::<span class="exam">(b) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}</math>
+
<span class="exam">(b) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}</math>

Revision as of 17:42, 23 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9C for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Test if the following sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a_n}} converges or diverges.

If it converges, also find the limit of the sequence.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{n}=\left(\frac{n-7}{n}\right)^{\frac{1}{n}}}


 Problem 2 

For each the following series find the sum, if it converges.

If you think it diverges, explain why.

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3^{2}}-\frac{1}{2\cdot3^{3}}+\frac{1}{2\cdot3^{4}}-\frac{1}{2\cdot3^{5}}+\cdots }

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{\infty}\,\frac{3}{(2n-1)(2n+1)}}

 Problem 3 

Test if each the following series converges or diverges.

Give reasons and clearly state if you are using any standard test.

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,\frac{n!}{(3n+1)!}}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=2}^{\infty}}\,\frac{\sqrt{n}}{n^{2}-3}}


 Problem 4 

Test the series for convergence or divergence.

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\sin\frac{\pi}{n}}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\cos\frac{\pi}{n}}


 Problem 5 

Find the radius of convergence and the interval of convergence of the series.

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}}