Difference between revisions of "Integration by Parts"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 210: | Line 210: | ||
== Exercise 3 == | == Exercise 3 == | ||
| + | Evaluate <math style="vertical-align: -13px">\int x\sqrt{x+1}~dx.</math> | ||
| − | + | We start by letting <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: -3px">dv=\sqrt{x+1}~dx.</math> | |
| − | + | Then, <math style="vertical-align: 0px">du=dx.</math> | |
| − | + | Also, by <math style="vertical-align: 0px">u-</math>substitution, we have | |
| − | + | ::<math style="vertical-align: 0px">v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.</math> | |
| + | |||
| + | Hence, by integration by parts, we get | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
| − | \displaystyle{ | + | \displaystyle{\int x\sqrt{x+1}~dx} & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\int \frac{2}{3}(x+1)^{\frac{3}{2}}~dx}\\ |
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C,} |
\end{array}</math> | \end{array}</math> | ||
| − | So, we | + | where we use <math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral. |
| − | ::<math> | + | |
| + | So, we have | ||
| + | |||
| + | ::<math>\int x\sqrt{x+1}~dx=\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C.</math> | ||
== Exercise 4 == | == Exercise 4 == | ||
Revision as of 09:14, 27 October 2017
Introduction
Let's say we want to integrate
Here, we can compute this antiderivative by using substitution.
While substitution is an important integration technique, it will not help us evaluate all integrals.
For example, consider the integral
There is no substitution that will allow us to integrate this integral.
We need another integration technique called integration by parts.
The formula for integration by parts comes from the product rule for derivatives.
Recall from the product rule,
Then, we have
If we solve the last equation for the second integral, we obtain
This formula is the formula for integration by parts.
But, as it is currently stated, it is long and hard to remember.
So, we make a substitution to obtain a nicer formula.
Let and
Then, and
Plugging these into our formula, we obtain
Warm-Up
Evaluate the following integrals.
1)
| Solution: |
|---|
| We have two options when doing integration by parts. |
| We can let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=e^x.} |
| In this case, we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} be the polynomial. |
| So, we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^x~dx.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x.} |
| Hence, by integration by parts, we get |
|
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xe^x-e^x+C} |
2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x\cos (2x)~dx}
| Solution: |
|---|
|
We have a choice to make. |
| We can let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(2x).} |
| In this case, we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} be the polynomial. |
| So, we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\cos(2x)~dx.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx.} |
| By Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).} |
| Hence, by integration by parts, we get |
|
| where we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u-} substitution to evaluate the last integral. |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C} |
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \ln x~dx}
| Solution: |
|---|
| We have a choice to make. |
| We can let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\ln x~dx.} |
| In this case, we don't want to let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\ln x~dx} since we don't know how to integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln x} yet. |
| So, we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=1~dx.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}~dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=x.} |
| Hence, by integration by parts, we get |
|
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ln (x)-x+C} |
Exercise 1
Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x \sec^2 x~dx.}
Since we know the antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec^2 x,}
we let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=\sec^2 x~dx.}
Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} and
Using integration by parts, we get
For the remaining integral, we use substitution.
Let Then,
So, we get
So, we have
Exercise 2
Evaluate
We start by letting and
Then, and
So, using integration by parts, we get
So, we have
Exercise 3
Evaluate
We start by letting and
Then,
Also, by substitution, we have
Hence, by integration by parts, we get
where we use substitution to evaluate the last integral.
So, we have
Exercise 4
Evaluate
First, using the Quotient Rule, we have
Now, we need to use the Product Rule. So, we have
So, we have
Exercise 5
Evaluate
First, using the Quotient Rule, we have
Now, we need to use the Product Rule. So, we have
So, we have
Exercise 6
Evaluate
First, using the Quotient Rule, we have
Now, we need to use the Product Rule. So, we have
So, we have