Difference between revisions of "Integration by Parts"

From Grad Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
!Solution:  
 
!Solution:  
 
|-
 
|-
|Using the Product Rule, we have  
+
|We have two options when doing integration by parts.
 
|-
 
|-
|
+
|We can let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; or &nbsp;<math style="vertical-align: 0px">u=e^x.</math>
::<math>f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).</math>  
 
|-
 
|Then, using the Power Rule, we have
 
|-
 
|
 
::<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).</math>
 
 
|-
 
|-
 +
|In this case, we let &nbsp;<math style="vertical-align: 0px">u</math>&nbsp; be the polynomial.
 
|-
 
|-
|<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function.
+
|So, we let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^x~dx.</math>
 
|-
 
|-
|You can distribute the terms and then use the Power Rule.
+
|Then, &nbsp;<math style="vertical-align: 0px">du=dx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
|In this case, we have
+
|Hence, by integration by parts, we get
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\
+
\displaystyle{\int xe^x~dx} & = & \displaystyle{xe^x-\int e^x~dx}\\
&&\\
 
& = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\
 
&&\\
 
& = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\
 
 
&&\\
 
&&\\
& = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.}
+
& = & \displaystyle{xe^x-e^x+C.}
 
\end{array}</math>
 
\end{array}</math>
|-
 
|Now, using the Power Rule, we get
 
|-
 
|
 
::<math>f'(x)=5x^4+12x^3+9x^2+12x+4.</math>
 
|-
 
|In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
 
 
|}
 
|}
  
Line 95: Line 79:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>xe^x-e^x+C</math>
|-
 
|or equivalently
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=x^5+3x^4+3x^3+6x^2+4x+4</math>
 
 
|}
 
|}
  
Line 108: Line 88:
 
|-
 
|-
 
|
 
|
Using the Quotient Rule, we have
+
We have a choice to make.
 
|-
 
|-
|
+
|We can let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; or &nbsp;<math style="vertical-align: -5px">u=\cos(2x).</math>
::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math>
 
 
|-
 
|-
|Then, using the Power Rule, we have
+
|In this case, we let &nbsp;<math style="vertical-align: 0px">u</math>&nbsp; be the polynomial.
 
|-
 
|-
|
+
|So, we let &nbsp;<math style="vertical-align: 0px">u=x</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">dv=\cos(2x)~dx.</math>
::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math>
 
 
|-
 
|-
|<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function.
+
|Then, &nbsp;<math style="vertical-align: 0px">du=dx.</math>&nbsp;
 
|-
 
|-
|You can divide and then use the Power Rule.
+
|By &nbsp;<math style="vertical-align: 0px">u-</math>substitution, &nbsp;<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math>
 
|-
 
|-
|In this case, we have
+
|Hence, by integration by parts, we get
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\
+
\displaystyle{\int x\cos(2x)~dx} & = & \displaystyle{\frac{1}{2}x\sin(2x)-\int \frac{1}{2}\sin(2x)~dx}\\
&&\\
 
& = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\
 
 
&&\\
 
&&\\
& = & \displaystyle{x+x^2.} \\
+
& = & \displaystyle{\frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C,}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, using the Power Rule, we get
+
|where we use &nbsp;<math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral.
|-
 
|
 
::<math>f'(x)=1+2x.</math>
 
 
|}
 
|}
  
Line 142: Line 115:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
||&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C</math>
|-
 
|or equivalently
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=1+2x</math>
 
 
 
|-
 
 
|}
 
|}
  
Line 156: Line 123:
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|Using the Quotient Rule, we get
+
|We have a choice to make.
 +
|-
 +
|We can let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; or &nbsp;<math style="vertical-align: -1px">dv=\ln x~dx.</math>
 +
|-
 +
|In this case, we don't want to let &nbsp;<math style="vertical-align: -1px">dv=\ln x~dx</math>&nbsp; since we don't know how to integrate &nbsp;<math style="vertical-align: -1px">\ln x</math>&nbsp; yet.
 +
|-
 +
|So, we let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">dv=1~dx.</math>
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=x.</math>
 +
|-
 +
|Hence, by integration by parts, we get  
 
|-
 
|-
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\
+
\displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \big(\frac{1}{x}\big)~dx}\\
&&\\
 
& = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\
 
&&\\
 
& = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\
 
 
&&\\
 
&&\\
& = & \displaystyle{\frac{1}{\cos^2 x}}\\
+
& = & \displaystyle{x\ln (x)-\int 1~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{\sec^2 x}
+
& = & \displaystyle{x\ln (x)-x+C.}
 
\end{array}</math>
 
\end{array}</math>
|-
 
|since &nbsp;<math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math>&nbsp; we have
 
|-
 
|
 
::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math>
 
 
|}
 
|}
  
Line 182: Line 148:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\sec^2 x</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x\ln (x)-x+C</math>
 
|-
 
|-
 
|}
 
|}

Revision as of 09:58, 27 October 2017

Introduction

Let's say we want to integrate

Here, we can compute this antiderivative by using  substitution.

While  substitution is an important integration technique, it will not help us evaluate all integrals.

For example, consider the integral

There is no substitution that will allow us to integrate this integral.

We need another integration technique called integration by parts.

The formula for integration by parts comes from the product rule for derivatives.

Recall from the product rule,

Then, we have

If we solve the last equation for the second integral, we obtain

This formula is the formula for integration by parts.

But, as it is currently stated, it is long and hard to remember.

So, we make a substitution to obtain a nicer formula.

Let    and  

Then,    and  

Plugging these into our formula, we obtain

Warm-Up

Evaluate the following integrals.

1)  

Solution:  
We have two options when doing integration by parts.
We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Final Answer:  
       

2)  

Solution:  

We have a choice to make.

We can let    or  
In this case, we let    be the polynomial.
So, we let    and  
Then,   
By  substitution,  
Hence, by integration by parts, we get
where we use   substitution to evaluate the last integral.
Final Answer:  
       

3)  

Solution:  
We have a choice to make.
We can let    or  
In this case, we don't want to let    since we don't know how to integrate    yet.
So, we let    and  
Then,    and  
Hence, by integration by parts, we get
Final Answer:  
       

Exercise 1

Evaluate  

First, we need to know the derivative of    Recall

Now, using the Quotient Rule, we have

Using the Product Rule and Power Rule, we have

So, we have

Exercise 2

Evaluate  

Notice that the function    is the product of three functions.

We start by grouping two of the functions together. So, we have  

Using the Product Rule, we get

Now, we need to use the Product Rule again. So,

So, we have

But, there is another way to do this problem. Notice

Now, you would only need to use the Product Rule once instead of twice.

Exercise 3

Evaluate  

Using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we get

Exercise 4

Evaluate  

First, using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we have

Exercise 5

Evaluate  

First, using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we have

Exercise 6

Evaluate  

First, using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we have